
• • • • • •
• • • • • • • •
• • • • • • •
• • • • •

SPINE= .4”

DEVELOPING APPLICATIONS FOR THE CLOUD ON
THE MICROSOFT WINDOWS® AZURE™ PLATFORM

D
E

V
E

L
O

P
IN

G
 A

P
P

L
IC

A
T
IO

N
S
 F

O
R
 T

H
E
 C

L
O

U
D

 O
N

 T
H

E
 M

IC
R

O
S

O
F

T
 W

IN
D

O
W

S
® A

Z
U

R
E

™ P
L
A

T
F

O
R

M
For more information explore:
msdn.microsoft.com/practices

Software Architecture U.S.A. $29.99
[Recommended]

patterns & practices
 Proven practices for predictable results

Save time and reduce risk on your
software development projects by
incorporating patterns & practices,
Microsoft’s applied engineering
guidance that includes both production
quality source code and documentation.

The guidance is designed to help
software development teams:

Make critical design and technology
selection decisions by highlighting
the appropriate solution architectures,
technologies, and Microsoft products
for common scenarios

Understand the most important
concepts needed for success by
explaining the relevant patterns and
prescribing the important practices

Get started with a proven code base
by providing thoroughly tested
software and source that embodies
Microsoft’s recommendations

The patterns & practices team consists
of experienced architects, developers,
writers, and testers. We work openly
with the developer community and
industry experts, on every project, to
ensure that some of the best minds in
the industry have contributed to and
reviewed the guidance as it is being
developed.

We also love our role as the bridge
between the real world needs of our
customers and the wide range of
products and technologies that
Microsoft provides.

How can a company create an application that has truly global reach and
that can scale rapidly to meet sudden, massive spikes in demand? Histori-
cally, companies had to invest in building an infrastructure capable of sup-
porting such an application themselves and, typically, only large companies
would have the available resources to risk such an enterprise. Building and
managing this kind of infrastructure is not cheap, especially because you
have to plan for peak demand, which often means that much of the capacity
sits idle for much of the time. The cloud has changed the rules of the game:
by making the infrastructure available on a “pay as you go” basis, creating a
massively scalable, global application is within the reach of both large and
small companies.

The cloud platform provides you with access to capacity on demand, fault
tolerance, distributed computing, data centers located around the globe,
and the capability to integrate with other platforms.

Yes, by moving applications to the cloud, you’re giving up some control and
autonomy, but you’re also going to benefi t from reduced costs, increased
fl exibility, and scalable computation and storage. This guide shows you how
to do this.

DEVE LO P I N G
AP P L I CAT I O N S

CLO U D
on the Microsoft Windows®
Azure™ Platform

Dominic Betts
Scott Densmore
Ryan Dunn
Masashi Narumoto
Eugenio Pace
Matias Woloski

FOR THE

developing applications for the cloud

>

Developing Applications
for the Cloud
on the Microsoft® Windows AzureTM Platform

Authors
Dominic Betts
Scott Densmore
Ryan Dunn
Masashi Narumoto
Eugenio Pace
Matias Woloski

ISBN: 978-0-7356-5606-2

This document is provided “as-is”. Information and views expressed in this
document, including URL and other Internet Web site references, may change
without notice. You bear the risk of using it. Some examples depicted herein
are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

© 2010 Microsoft. All rights reserved.

Microsoft, Microsoft Dynamics, Active Directory, Active Directory Federation
Services, IntelliTrace, MSDN, Sharepoint, SQL Azure, Visual C#, Visual Studio,
Windows, Windows Azure, Windows Identity Foundation, Windows Live, and
WIndows Server are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Contents

foreword
 Bharat Shyam xi

preface xiii
Who This Book Is For xiv
Why This Book Is Pertinent Now xiv
How This Book Is Structured xv
What You Need to Use the Code xvi
Who’s Who xvii

1 The Tailspin Scenario 1
 The Tailspin Company 1

Tailspin’s Strategy 1
The Surveys Application 2
Tailspin’s Goals and Concerns 3

The Surveys Application Architecture 5

2 Hosting a Multi-Tenant Application
 on Windows Azure 7
 Single-Tenant vs. Multi-Tenant 7
 Multi-Tenancy Architecture in Azure 8

Selecting a Single-Tenant or Multi-Tenant
Architecture 9

Architectural Considerations 9
Application Stability 10
Making the Application Scalable 10
Service Level Agreements 10
The Legal and Regulatory Environment 11
Handling Authentication and Authorization 11

vi

Application Life Cycle Management
Considerations 11

Maintaining the Code Base 11
Handling Application Upgrades 12
Monitoring the Application 12
Using .NET Providers and Third-Party Components 12
Provisioning for Trials and New Customers 13

Customizing the Application 13
URLs to Access the Application 13
Customizing the Application by Tenant 13

Multi-Tenant Data Architecture 14
Protecting Data from Other Tenants 14
Data Architecture Extensibility 15
Data Architecture Scalability 15

Financial Considerations 16
Billing Customers 16
Managing Application Costs 17

3 Accessing the Surveys Application 19
DNS Names, Certificates, and SSL
in the Surveys Application 19

Web Roles in the Surveys Application 19
Goals and Requirements 20
Overview of the Solution 20
Inside the Implementation 21

Geo-Location 23
Goals and Requirements 23
Overview of the Solution 24

Authentication and Authorization 25
Goals and Requirements 26
Overview of the Solution 26
Inside the Implementation 29
Protecting Session Tokens in Windows Azure 34

Content Delivery Network 35
The Solution 36

Setting the Access Control for the BLOB Containers 36
Configuring the CDN and Storing the Content 37
Configuring URLs to Access the Content 37
Setting the Caching Policy 39

More Information 39

 vii

4 Building a Scalable, Multi-Tenant Application
 for Windows Azure 41

Partitioning the Application 41
The Solution 41
Inside the Implementation 42

On-Boarding for Trials and New Customers 45
Basic Subscription Information 45
Authentication and Authorization
Information 46

Provisioning a Trust Relationship
with the Subscriber’s Identity Provider 46
Provisioning Authentication and Authorization
for Basic Subscribers 47
Provisioning Authentication and Authorization
for Individual Subscribers 48

Geo Location Information 48
Database Information 48

Billing Customers 48
Customizing the User Interface 50
Scaling Applications by Using Worker Roles 50

Example Scenarios for Worker Roles 51
Triggers for Background Tasks 52
Execution Model 53
The MapReduce Algorithm 54

Scaling the Surveys Application 60
Goals and Requirements 60
The Solution 61
Inside the Implementation 63

Using a Worker Role to Calculate
 the Summary Statistics 63
The Worker Role “Plumbing” Code 67
Testing the Worker Role 72

References and Resources 73

5 Working with Data in the Surveys Application 75
A Data Model for a Multi-Tenant Application 75

Storing Survey Definitions 76
Storing Tenant Data 77
Storing Survey Answers 78
Storing Survey Answer Summaries 79

viii

The Store Classes 80
SurveyStore Class 80
SurveyAnswerStore Class 80
SurveyAnswersSummaryStore Class 80
SurveySqlStore Class 81
SurveyTransferStore Class 81
TenantStore Class 81

Testing and Windows Azure Storage 81
Goals and Requirements 81
The Solution 81
Inside the Implementation 82

Saving Survey Response Data 87
Goals and Requirements 87
The Solution 87

Solution 1: The Delayed Write Pattern 88
Solution 2: Writing Directly to BLOB Storage 89
Comparing the Solutions 91

Inside the Implementation 92
Saving the Survey Response Data
 to a Temporary Blob 92

Displaying Data 94
Paging through Survey Results 94

Goals and Requirements 94
The Solution 94
Inside the Implementation 96

Session Data Storage 98
Goals and Requirements 98
The Solution 100
Inside the Implementation 102

Displaying Questions 103
Displaying the Summary Statistics 104

Using SQL Azure 105
Goals and Requirements 106
The Solution 106
Inside the Implementation 107

References and Resources 110

 ix

appendices
a Updating a Windows Azure Service 111
 options for updating a windows
 azure service 111

Limitations When Updating a Windows Azure Service 112
Updating Only the Configuration of a Service 113
Redeploying a Service without Incurring Downtime 113

Design Considerations for Maximizing Upgradability 113
About Upgrade Domains and Fault Domains 115

Fault Domains 115
Upgrade Domains 115

Using Upgrade Domains for In-Place
Upgrades 116
Usingthe Windows Azure Service
Management API 117

Accessing the Windows Azure Service
Management API 118
Performing Service Upgrades Using the Service
Management API 119
Using the Windows Azure Service Management
API to Manage Scaling 119

Dependencies for Azure Applications and Projects 121

b debugging and troubleshooting
 windows azure applications 121

Debugging Azure Applications Locally
 during Development 122
Common Setup And Deployment Errors
 with Windows Azure 123
Using Intellitrace with Applications
Deployed to Windows Azure 124
Using Windows Azure Diagnostics 126

About Windows Azure Diagnostics 126
Limitations of Windows Azure Diagnostics 129
Using a Custom Tracing, and Debugging Agent 129
Tools for Working with Windows Azure
 Diagnostics 130
Configuring Diagnostics Using Configuration Files 132
Using the Diagnostics API in a Windows Azure
 Application 133

Resolving Permission Issues in Partial Trust Mode 140
More Information 141

index 143

xi

Foreword

Windows Azure is a highly scalable, robust, and cost-effective solu-
tion for the deployment of applications and services—for organiza-
tions and enterprises of all sizes, and in all types of markets. My task
at Microsoft is to ensure that developers can help these organizations
and enterprises to achieve their goals by quickly and easily taking
advantage of the power, flexibility, and availability of Windows Azure
services.

Developing on the Windows Azure platform is a natural exten-
sion for developers who are familiar with the Microsoft platform, and
with tools and development environments such as .NET and Visual
Studio. However, to be really successful in this exciting new arena
requires developers to understand some less familiar concepts such as
multi-tenancy, data partitioning, and the robust storage mechanisms
used in Windows Azure and SQL Azure.

Within our teams, we’ve done our best to build a broad set of the
tools that developers can use to build Windows Azure applications
and services. And now, with this guide, the patterns & practices team
is extending the developer experience by providing the information
they require to build high performance, real world-ready applications
on the Windows Azure platform.

“Developing Applications for the Cloud” is the second in a series of
patterns & practices guides that explore the scenarios for building
cloud-hosted applications. The first guide showed how developers
can move their applications to the cloud. This guide explores the
development of new applications for the cloud. It is based on the
experiences of a fictitious organization named Tailspin that is building
a scalable, multi-tenant application to host surveys; and explores
major concepts and implementation details associated with the devel-
opment of Windows Azure applications.

As with the other guides in this series, it takes a practical
hands-on approach to explaining the scenario for the application, the
design and development considerations, and how the application

xii

takes advantage of features and capabilities of the Windows Azure
platform. The guide focuses on the use of good practice design and
code implementation, integrating with the run-time environment, and
making full use of storage and background worker tasks. It includes
debugging and troubleshooting information, and a comprehensive
sample application that developers can download and use to help
them understand the implementation, and to apply the knowledge
they’ve acquired when designing and building their own applications.

I’m proud of the work we have done to provide developers with
a great experience for working with Windows Azure, and I’m excited
by the work that patterns & practices are doing with this series of
guides. Together we can help developers to realize their potential, and
to be productive and successful on the Windows Azure platform.

Bharat Shyam, General Manager
Windows Azure Developer Platform,
Microsoft Corporation

xiii

Preface

How can a company create an application that has truly global reach
and that can scale rapidly to meet sudden, massive spikes in demand?
Historically, companies had to invest in building an infrastructure ca-
pable of supporting such an application themselves and, typically, only
large companies would have the available resources to risk such an
enterprise. Building and managing this kind of infrastructure is not
cheap, especially because you have to plan for peak demand, which
often means that much of the capacity sits idle for much of the time.
The cloud has changed the rules of the game: by making the infra-
structure available on a “pay as you go” basis, creating a massively
scalable, global application is within the reach of both large and small
companies.

The cloud platform provides you with access to capacity on de-
mand, fault tolerance, distributed computing, data centers located
around the globe, and the capability to integrate with other platforms.
Someone else is responsible for managing and maintaining the entire
infrastructure, and you only pay for the resources that you use in each
billing period. You can focus on using your core domain expertise to
build and then deploy your application to the data center or data
centers closest to the people who use it. You can then monitor your
applications, and scale up or scale back as and when the capacity is
required.

Yes, by moving applications to the cloud, you’re giving up some
control and autonomy, but you’re also going to benefit from reduced
costs, increased flexibility, and scalable computation and storage.
Developing Applications for the Cloud on the Microsoft Windows Azure
Platform shows you how to do this.

xiv

Who This Book Is For
This book is the second volume in a planned series about Windows
Azure™ technology platform. Volume 1, Moving Applications to the
Cloud on the Windows Azure Platform, provides an introduction
to Windows Azure, discusses the cost model and application life cycle
management for cloud-based applications, and describes how to
migrate an existing ASP.NET application to the cloud. This book dem-
onstrates how you can create from scratch a multi-tenant, Software
as a Service (SaaS) application to run in the cloud by using the latest
versions of the Windows Azure tools and the latest features of the
Windows Azure platform. The book is intended for any architect,
developer, or information technology (IT) professional who designs,
builds, or operates applications and services that run on or interact
with the cloud. Although applications do not need to be based on the
Microsoft® Windows® operating system to work in Windows Azure,
this book is written for people who work with Windows-based
systems. You should be familiar with the Microsoft .NET Framework,
Microsoft Visual Studio® development system, ASP.NET MVC, and
Microsoft Visual C#® development tool.

Why This Book Is Pertinent Now
In general, the cloud has become a viable option for making your ap-
plications accessible to a broad set of customers. In particular, Win-
dows Azure now has in place a complete set of tools for developers
and IT professionals. Developers can use the tools they already know,
such as Visual Studio, to write their applications for the cloud. In
addition, Windows Azure provides a complete, simulated environ-
ment known as the development fabric that developers can use to
locally write, test, and debug their applications before they deploy
them to the cloud. There are also tools and an API to manage your
Windows Azure accounts. This book shows you how to use all these
tools in the context of a common scenario—how to develop a brand
new, multi-tenant, SaaS application for Windows Azure.

 xvpreface

How This Book Is Structured
The Tailspin Scenario
Motivations, constraints, goals of SaaS ISV
building a service on the Windows Azure
platform

Hosting a Multi-Tenant Application on
Windows Azure
Architecting and building multi-tenant
applications

Accessing the Surveys Application
Security considerations, geo-location, CDN,
web hosting

Building a Scalable, Multi-Tenant
Application for Windows Azure
Partitioning, asynchronous processing,
customization, billing, on-boarding

Working with Data in the Surveys
Application
Data model, using SQL Azure and Windows
Azure blobs and tables, paging, data analysis

Updating a Windows Azure Service
Upgrade domains, falut domains, in-place

upgrades, Windows Azure Service Management API

Debugging and Troubleshooting Windows
Azure Applications

Using Intellitrace, enabling tracing
and logging, resloving common issues

“The Tailspin Scenario” introduces you to the Tailspin company and
the Surveys application. It provides an architectural overview of the
Surveys application; the following chapters provide more information
about how Tailspin designed and implemented the Surveys applica-
tion for the cloud. Reading this chapter will help you understand
Tailspin’s business model, its strategy for adopting the cloud platform,
and some of its concerns.

“Hosting a Multi-Tenant Application on Windows Azure” dis-
cusses some of the issues that surround architecting and building
multi-tenant applications to run on Windows Azure. It describes the
benefits of a multi-tenant architecture and the trade-offs that you
must consider. This chapter provides a conceptual framework that
helps the reader understand some of the topics discussed in more
detail in the subsequent chapters.

“Accessing the Surveys Application” describes some of the chal-
lenges that the developers at Tailspin faced when they designed and
implemented some of the customer-facing components of the appli-
cation. Topics include the choice of URLs for accessing the surveys
application, security, hosting the application in multiple geographic
locations, and using the Content Delivery Network to cache content.

xvi

“Building a Scalable, Multi-Tenant Application for Windows
Azure” examines how Tailspin ensured the scalability of the multi-
tenant Surveys application. It describes how the application is parti-
tioned, how the application uses worker roles, and how the applica-
tion supports on-boarding, customization, and billing for customers.

“Working with Data in the Surveys Application” describes how
the application uses data. It begins by describing how the Surveys
application stores data in both Windows Azure tables and blobs, and
how the developers at Tailspin designed their storage classes to be
testable. The chapter also describes how Tailspin solved some
specific problems related to data, including paging through data, and
implementing session state. Finally, this chapter describes the role that
SQL Azure™ technology platform plays in the Surveys application.

“Updating a Windows Azure Service” describes the options for
updating a Windows Azure application and how you can update an
application with no interruption in service.

“Debugging and Troubleshooting Windows Azure Applications”
describes some of the techniques specific to Windows Azure applica-
tions that will help you to detect and resolve issues when building,
deploying, and running Windows Azure applications. It includes
descriptions of how to use Windows Azure Diagnostics and how to
use Microsoft IntelliTrace™ with applications deployed to Windows
Azure.

What You Need to Use the Code
These are the system requirements for running the scenarios:
•	 Microsoft Windows Vista SP1, Windows 7, or Microsoft

Windows Server® 2008 (32-bit or 64-bit)
•	 Microsoft Internet Information Services (IIS) 7.0
•	 Microsoft .NET Framework 4 or later
•	 Microsoft Visual Studio 2010
•	 Windows Azure Tools for Microsoft Visual Studio 2010
•	 ASP.NET MVC 2.0
•	 Windows Identity Foundation
•	 Microsoft Anti-Cross Site Scripting Library
•	 Moq (to run the unit tests)
•	 Enterprise Library Unity Application Block

(binaries included in the samples)

 xvii

Who’s Who
As mentioned earlier, this book uses a sample application that illus-
trates how to implement applications for the cloud. A panel of experts
comments on the development efforts. The panel includes a cloud
specialist, a software architect, a software developer, and an IT profes-
sional. The delivery of the sample application can be considered from
each of these points of view. The following table lists these experts.

Bharath is a cloud specialist. He checks that a cloud-based solution will work
for a company and provide tangible benefits. He is a cautious person, for good
reasons.

Implementing a single-tenant application for the
cloud is easy. Realizing the benefits that a cloud-
based solution can offer to a multi-tenant
applications is not always so straight-forward.

Jana is a software architect. She plans the overall structure of an application.
Her perspective is both practical and strategic. In other words, she considers
not only what technical approaches are needed today, but also what direction
a company needs to consider for the future.

It’s not easy to balance the needs of the company, the
users, the IT organization, the developers, and the
technical platforms we rely on.

Markus is a senior software developer. He is analytical, detail-oriented, and
methodical. He’s focused on the task at hand, which is building a great cloud-
based application. He knows that he’s the person who’s ultimately responsible
for the code.

For the most part, a lot of what we know about
software development can be applied to the
cloud. But, there are always special considerations
that are very important.

Poe is an IT professional who’s an expert in deploying and running in a
corporate data center. Poe has a keen interest in practical solutions; after all,
he’s the one who gets paged at 3:00 AM when there’s a problem.

Running applications in the cloud that are accessed by
thousands of users involves some big challenges. I want
to make sure our cloud apps perform well, are reliable,
and are secure. The reputation of Tailspin depends on
how users perceive the applications running in the cloud.

If you have a particular area of interest, look for notes provided by
the specialists whose interests align with yours.

preface

1

1

This chapter introduces a fictitious company named Tailspin. It de-
scribes Tailspin’s plans to launch a new, online service named Surveys
that will enable other companies or individuals to conduct their own
online surveys. The chapter also describes why Tailspin wants to host
its survey application on the Windows Azure™ technology platform.
As with any company considering this process, there are many issues
to consider and challenges to be met, particularly because this is the
first time Tailspin is using the cloud. The chapters that follow this one
show, step-by-step, how Tailspin architected and built its survey
application to run on Windows Azure.

The Tailspin Company
Tailspin is a startup ISV company of approximately 20 employees

that specializes in developing solutions using Microsoft® technolo-
gies. The developers at Tailspin are knowledgeable about various
Microsoft products and technologies, including the .NET Framework,
ASP.NET MVC, SQL Server®, and Microsoft Visual Studio® develop-
ment system. These developers are aware of Windows Azure but have
not yet developed any complete applications for the platform.

The Surveys application is the first of several innovative online
services that Tailspin wants to take to market. As a startup, Tailspin
wants to develop and launch these services with a minimal investment
in hardware and IT personnel. Tailspin hopes that some of these
services will grow rapidly, and the company wants to have the ability
to respond quickly to increasing demand. Similarly, it fully expects
some of these services to fail, and it does not want to be left with
redundant hardware on its hands.

tailspin’s strategy
Tailspin is an innovative and agile organization, well placed to exploit
new technologies and the business opportunities offered by the

The Tailspin Scenario

2 chapter one

cloud. As a startup, Tailspin is willing to take risks and use new tech-
nologies when it implements applications. Tailspin’s plan is to embrace
the cloud and gain a competitive advantage as an early adopter. It
hopes to rapidly gain some experience, and then quickly expand on
what it has learned. This strategy can be described as “try, fail fast,
learn, and then try again.” Tailspin has decided to start with the
Surveys application as its first cloud-based service offering.

the surveys application
The Surveys application enables Tailspin’s customers to design a
survey, publish the survey, and collect the results of the survey for
analysis. A survey is a collection of questions, each of which can be
one of several types such as multiple-choice, numeric range, or free
text. Customers begin by creating a subscription with the Surveys
service, which they use to manage their surveys and to apply branding
by using styles and logo images. Customers can also select a
geographic region for their account, so that they can host their
surveys as close as possible to the survey audience. The Surveys
application allows users to try out the application for free, and to sign
up for one of several different packages that offer different collec-
tions of services for a monthly fee.

Figure 1 illustrates the Surveys application and highlights the
three different groups of users who interact with application.

figure 1
The Surveys application

Public
website

Tailspin
website

Tailspin
Core

Subscribber
website

Tailspin

Complete
Surveys

Manange Applications
Manage Subscribers

Create Survey
Analyse Survey

Large Subscriber

Medium Subscriber

Small Subscriber

Windows Azure Region

 3the tailspin scenario

Customers who have subscribed to the Surveys service (or who are
using a free trial) access the Subscribers website that enables them to
design their own surveys, apply branding and customization, and col-
lect and analyze the survey results. Depending on the package they
select, they have access to different levels of functionality within the
Surveys application. Tailspin expects its customers to be of various
sizes and from all over the world, and customers can select a geo-
graphic region for their account and surveys.

Tailspin wants to design the service in such a way that most of the
administrative and configuration tasks are “self-service” and are per-
formed by the subscriber with minimal intervention by Tailspin staff.

The Public website enables the people participating in the survey
to complete their responses to the survey questions. The survey cre-
ator will inform their survey audience of the URL to visit to complete
the survey.

The Tailspin website enables staff at Tailspin to manage the ap-
plication and manage the subscriber accounts. All three websites in-
teract with the core services that comprise the Surveys application
and provide access to the application’s data storage.

tailspin’s goals and concerns
Tailspin faces several challenges, both as an organization and with the
Surveys application in particular. First, customers might want to cre-
ate surveys associated with a product launch, a marketing campaign,
or the surveys might be seasonal, perhaps associated with a holiday
period. Often, customers who use the survey application will want to
set up these surveys with a very short lead-time. Surveys will usually
run for a fixed, short period of time but may have a large number of
respondents. This means that usage of the Surveys application will
tend to spike, and Tailspin will have very little warning of when these
spikes will occur. Tailspin wants to be able to offer the Surveys ap-
plication to customers around the world, and because of the nature
of the Surveys application with sudden spikes in demand, it wants to
be able to quickly expand or contract its infrastructure in different
geographical locations. It doesn’t want to purchase and manage its
own hardware or to maintain sufficient capacity to meet peak de-
mand. It also doesn’t want to sign long-term contracts with hosting
providers for capacity that it will only use for part of the time.

Tailspin wants to be able to maintain its competitive advantage by
rapidly rolling out new features to existing services or to gain com-
petitive advantage by being first to market with new products and
services.

With the Surveys application, Tailspin wants to offer its custom-
ers a reliable, customizable, and flexible service for creating and con-
ducting online surveys. It must give its customers the ability to create

In the world of Software as
a Service (SaaS), subscrib-
ers are commonly known as
“Tenants.” We commonly
refer to applications like
Tailspin Surveys as
“multi-tenant” applications.

Resource elasticity and
geo-distribution are key
properties of the Windows
Azure platform

4 chapter one

surveys using a range of question types, and the ability to brand the
surveys using corporate logos and color schemes.

Tailspin wants to be able to offer different packages (at different
prices) to customers, based on a customer’s specific requirements.
Tailspin wants to offer its larger customers the ability to integrate the
Surveys application into the customer’s own infrastructure. For ex-
ample, integration with the customer’s own identity infrastructure
could provide single sign-on (SSO) or enable multiple users to manage
surveys or access billing information. Integration with the customer’s
own Business Intelligence (BI) systems could provide for a more so-
phisticated analysis of survey results. For small customers who don’t
need, or can’t use, the sophisticated integration features, a basic pack-
age might include an authentication system. The range of available
packages should also include a free trial to enable customers to try the
Surveys application before they purchase it.

The subscriber and public websites also have different scalability
requirements. It is likely that thousands of users might complete a
survey, but only a handful of users from each subscriber will edit exist-
ing surveys or create new surveys. Tailspin wants to optimize the
resources for each of these scenarios.

The Tailspin business model is to charge subscribers a monthly fee
for a service such as the Surveys application and, because of the
global market they are operating in, Tailspin wants its prices to be
competitive. Tailspin must then pay the actual costs of running the
application, so in order to maintain their profit margin Tailspin must
tightly control the running costs of the services they offer to their
customers.

Note: In this scenario, Tailspin’s customers (the subscribers) are
not Windows Azure customers. Subscribers pay Tailspin, who in
turn pays Microsoft for their use of Windows Azure platform
components.

Tailspin wants to ensure that customer’s data is kept safe. For
example, a customer’s data must be private to that customer, there
must be multiple physical copies of the survey data, and customers
should not be able to lose data by accidently deleting a survey. In ad-
dition, all existing survey data must be preserved whenever Tailspin
updates the application.

Finally, Tailspin would like to be able to leverage the existing skills
of its developers and minimize any retraining necessary to build the
Surveys application.

 5the tailspin scenario

The Surveys Application Architecture
To achieve the goals of the Surveys application, Tailspin decided
to implement the application as a cloud-based service using the
Windows Azure platform. Figure 2 shows a high-level view of this
architecture.

figure 2
The Surveys application architecture

The architecture of the Surveys Application is straightforward and
one that many other Windows Azure applications use. The core of the
application uses Windows Azure web roles, worker roles, and storage.
Figure 2 shows the three groups of users who access the application:
the application owner, the public, and subscribers to the Surveys
service (in this example, Adatum and Fabrikam). It also highlights how
the application uses SQL Azure™ technology platform to provide a
mechanism for subscribers to dump their survey results into a rela-
tional database to analyze the results in detail. This guide discusses
the design and implementation in detail and describes the various web
and worker roles that comprise the Surveys application.

Some of the specific issues that the guide covers include how
Tailspin implemented the Surveys application as a multi-tenant ap-
plication in Windows Azure and how the developers designed the
application to be testable. The guide describes how Tailspin handles

Application
 owner

Survey filler

Survey tenant
-Manage tenants

-Fill survey

-Create su
rvey

-Acce
ss

result d
umps

-Dump results

Tailspin (ISV)
Public access

Adatum

Fabrikam

Storage

Worker

MVC Web
application

SQL
Azure

Windows Azure

6 chapter one

the integration of the application’s authentication mechanism with a
customer’s own security infrastructure by using a federated identity
with multiple partners model. The guide also covers the reasoning
behind the decision to use a hybrid data model that uses both Win-
dows Azure Storage and SQL Azure. Other topics covered include
how the application uses caching to ensure the responsiveness of the
Public website for survey respondents, how the application automates
the on-boarding and provisioning process, how the application lever-
ages the Windows Azure geographic location feature, and the cus-
tomer-billing model adopted by Tailspin for the Surveys application.

Tailspin will build the application using the latest available
technologies: Visual Studio 2010, ASP.NET MVC 2.0, and .NET
Framework 4.

Tailspin can use the
Content Delivery Network
feature of Windows Azure
to provide caching services.

7

This chapter discusses some of the issues that surround architecting
and building multi-tenant applications to run on Windows Azure™
technology platform. A highly scalable, cloud-based platform offers a
compelling set of features for building services that many users will
pay a subscription to use. A multi-tenant architecture where multiple
users share the application enables economies of scale as users share
resources, but at the cost of a more complex application that has to
manage multiple users independently of each other.

This chapter does not focus specifically on Tailspin or the Surveys
application, but it uses the scenario described in the previous chapter
to illustrate some of the factors that you might consider when choos-
ing whether to implement a multi-tenant application on Windows
Azure.

This chapter provides a conceptual framework that helps you
understand some of the topics discussed in more detail in the subse-
quent chapters of this guide.

Single-Tenant vs. Multi-Tenant
One of the first architectural decisions that the team at Tailspin had
to make about the Surveys application was whether it should be a
single-tenant or multi-tenant application to best support multiple
customers. Figure 1 shows the difference between these approaches
at a high-level. The single-tenant model has a separate, logical instance
of the application for each customer, while the multi-tenant model
has a single logical instance of the application shared by many custom-
ers. It’s important to note that the multi-tenant model still offers
separate views of the application’s data to its users. In the Surveys
application, ClientB must not be able to see or modify ClientA’s sur-
veys or data. Tailspin, as the owner of the application, will have full
access to all the data stored in the application.

2 Hosting a Multi-Tenant
Application on Windows Azure

8 chapter two

figure 1
Logical view of single-tenant and multi-tenant architectures

.

Multi-Tenancy Architecture in Azure
In Windows Azure, the distinction between the multi-tenant model
and the single-tenant model is not as straightforward as the model in
Figure 1 because an application in Windows Azure can be made up of
multiple components, each of which can be single-tenanted or multi-
tenanted. For example, if an application has a user interface (UI)
component, a services component, and a storage component, a pos-
sible design could look like that shown in Figure 2.

This diagram shows logical
instances of the Surveys
application. In practice,
you can implement each
logical instance as multiple
physical instances to scale
the application

Tailspin Tailspin

Multi-instance, single-tenant Single-instance, multi-tenant

Instance of
Surveys for ClientA

Instance of
Surveys for ClientC

Instance of
Surveys for ClientB

Instance of Surveys
(not client specific)

ClientC

ClientB

ClientA

ClientB

ClientA ClientC

 9hosting a multi-tenant application

figure 2
Sample architecture for Windows Azure
This is not the only possible design, but it illustrates that you don’t
have to make the same choice of either single-tenancy or multi-
tenancy model for every component in your application.

Should you design your Windows Azure application to be single-
tenant or multi-tenant? There’s no right or wrong answer, but as you
will see in the following section, there are a number of factors that
can influence your choice.

Selecting a Single-Tenant or Multi-Tenant
Architecture

This section introduces some of the criteria that an architect would
consider when deciding on a single-tenant or multi-tenant design. This
book revisits many of these topics in more detail, and with specific
reference to Tailspin and the Surveys application, in later chapters.
The relative importance of the different criteria will vary for different
application scenarios.

architectural considerations
The architectural requirements of your application will influence your
choice of a single-tenant or multi-tenant architecture.

Windows AzureClientA

ClientB

ClientC

Web UI
-ClientA
-Single-tenant

Web UI
-ClientB
-Single-tenant

Web UI
-ClientC
-Single-tenant

Surveys Services
-Multi-tenant

Storage
-ClientA
-Single-tenant

Storage
-ClientB
-Single-tenant

Storage
-ClientC
-Single-tenant

You can always have one
tenant in a multi-tenant
application, but you can’t
have multiple tenants in a
single-tenant application.

10 chapter two

Application Stability
A multi-tenant application is more vulnerable to instance failure than
a single-tenant application. If a single-tenant instance fails, only the
customer using that instance is affected, whereas if the multi-
tenant instance fails, all customers are affected. However, Windows
Azure can mitigate this risk by enabling you to deploy multiple,
identical copies of your application into multiple Windows Azure role
instances (this is really a multi-tenant, multi-instance model).
Windows Azure load balances requests across those role instances,
and you must design your application to ensure that it functions
correctly when you deploy multiple instances. For example, if your
application uses Session state, you must make sure that each web role
instance can access the state. Windows Azure will monitor your role
instances and automatically restart any failed role instances.

Making the Application Scalable
The scalability of an application running on Windows Azure depends
largely on being able to deploy multiple instances of your web and
worker roles to multiple compute nodes while being able to access
the same data from those nodes. Both single-tenant and multi-tenant
applications use this feature to scale out when they run on Windows
Azure. Windows Azure also offers various sizes of compute nodes
that enable you to scale up or scale down individual instances.

For some applications, you may not want to have all your custom-
ers sharing a single, multi-tenant instance. For example, you may want
to group your customers based on the functionality they use or their
expected usage patterns, and then optimize each instance for the
customers who are using it. In this case, you may need to have two or
more copies of your multi-tenanted application deployed in different
Windows Azure accounts.

Service Level Agreements
You may want to offer a different Service Level Agreement (SLA) with
the different subscription levels for the service. If subscribers with
different SLAs are sharing the same multi-tenant instance, you should
aim to meet the highest SLA, thereby ensuring that you also satisfy
the lower SLAs for other customers.

However, if you have a limited number of different SLAs, you
could put all the customers that share the same SLA into the same
multi-tenant instance and make sure that the instance has sufficient
resources to satisfy the requirements of the SLA.

In Windows Azure, the
preferred way to scale your
application is to scale out
by adding additional nodes
instead of scaling up by
using larger nodes. This
enables you to add or
remove capacity as and
when it’s needed.

 11hosting a multi-tenant application

The Legal and Regulatory Environment
For certain applications, you may need to take into account specific
regulatory or legal issues. This may require some differences in func-
tionality, specific legal messages to be displayed in the UI, guaranteed
separate databases for storage, or storage located in a specific region.
This may again lead to having separate multi-tenant deployments
for groups of customers, or it may lead to requiring a single-tenant
architecture.

Handling Authentication and Authorization
You may want to provide your own authentication and authorization
systems for your cloud application that require customers to set up
accounts for the users who will interact with the application.
However, customers may prefer to use an existing authentication
system and avoid having to create a new set of credentials for your
application. In a multi-tenant application, this would imply being able
to support multiple authentication providers, and it may possibly
require a custom mapping to your application’s authorization scheme.
For example, someone who is a “Manager” in Microsoft® Active
Directory® directory service at Adatum might map to being an
“Administrator” in Adatum’s Tailspin Surveys application.

Note: For more information about claims-based identity, see the
book, A Guide to Claims-Based Identity and Access Control.
You can download a PDF copy of this book from http://msdn.
microsoft.com/en-us/library/ff423674.aspx.

application life cycle management
considerations

Your choice of a single-tenant or multi-tenant architecture will affect
how easy it is to develop, deploy, maintain, and monitor your applica-
tion.

Maintaining the Code Base
Maintaining separate code bases for different customers will rapidly
lead to escalating support and maintenance costs for an ISV because
it becomes more difficult to track which customers are using which
version. This will lead to costly mistakes being made. A multi-tenant
system with a single, logical instance guarantees a single code base
for the application. You can still maintain a single code base with a
multi-instance, single-tenant model, but there could be a short-term
temptation (with long-term consequences) to branch the code for

http://msdn

12 chapter two

individual customers in order to meet specific customer requirements.
In some scenarios, where there is a requirement for a high-degree of
customization, multiple code bases may be a viable option, but you
should explore how far you can get with custom configurations or
custom business rule components before going down this route. If
you do need multiple code bases, you should structure your applica-
tion such that custom code is limited to as few components as
possible.

Handling Application Upgrades
A multi-tenant application makes it easy to roll out application up-
dates to all your customers at the same time. This approach means
that you only have a single, logical instance to upgrade, which reduces
the maintenance effort. In addition, you know that all your customers
are using the latest version of the software, which makes the support
job easier. Windows Azure upgrade domains facilitate this process by
enabling you to roll out your upgrade across multiple role instances
without stopping the application. If a client has operational proce-
dures or software that are tied to a specific version of your applica-
tion, any upgrades must be coordinated with that client.

To mitigate the risks associated with upgrading the application,
you can implement a rolling upgrade program that upgrades some
users, monitors the new version, and when you are confident in the
new version, rolls out the changes to the remainder of the user base.

Note: For more information about how to handle application
upgrades, see Appendix A, “Updating a Windows Azure Service.”

Monitoring the Application
Monitoring a single application instance is easier than monitoring
multiple instances. In the multi-instance, single tenant model, any
automated provisioning would need to include setting up the
monitoring environment for the new instance, which will add to the
complexity of the provisioning process for your application. Monitor-
ing will also be more complex if you decide to use rolling upgrades
because you must monitor two versions of the application simultane-
ously and use the monitoring data to evaluate the new version of the
application.

Using .NET Providers and Third-Party Components
If you decide on a multi-tenant architecture, you must carefully evalu-
ate how well any third-party components will work. You may need to
take some additional steps ensure that a third-party component is
“multi-tenant aware.” With a single-tenant, multi-instance deploy-
ment where you want to be able to scale out for large tenants, you

 13hosting a multi-tenant application

will also need to verify that third-party components are “multi-
instance aware.”

Provisioning for Trials and New Customers
Provisioning a new client or initializing a free trial of your service will
be easier and quicker to manage if it involves only a configuration
change. A multi-instance, single-tenant model will require you to de-
ploy a new instance of the application for every customer, including
those using a free trial. Although you can automate this process, it will
be considerably more complicated than changing or creating configu-
ration data in a single-instance, multi-tenant application.

customizing the application
Whether you choose a single-tenant or multi-tenant architecture,
customers will still need to be able to customize the application.

URLs to Access the Application
By default, Windows Azure gives each application a Domain Name
System (DNS) name like this: <yourappname>.cloudapp.net. You can
use a DNS CNAME record to map a custom DNS name to your
application. For example, if the Tailspin Surveys application is named
tailspin.cloudapp.net, Tailspin could use a CNAME entry to map the
URL https://surveys.tailspin.com to the application. If each customer
has its own, separate, single-tenant instance of the application run-
ning in a separate Windows Azure account, you could map a custom
DNS name to each instance of the application. For example, you could
map https://surveys.adatum.com and https://surveys.fabrikam.com to
separate instances.

Because Internet Information Services (IIS) can have only one SSL
certificate associated with a port, a multi-tenant application can use
only a single domain name on the default port 443. Therefore, in a
multi-tenant application, you can use an addressing scheme like this:
https://<azureaccount>.cloudapp.net/<app>/<tenant>. Adatum, a sub-
scriber to the Tailspin Surveys application, would access the Surveys
application at https://services.tailspin.com/surveys/adatum.

Customizing the Application by Tenant
Customers will want to be able to style and brand the site for their
own users. You must establish how much control customers will want
in order to determine how best to enable the customization. At one
end of the scale, you might provide the customer with the ability to
customize the appearance of the application by allowing them to
upload cascading style sheets and image files. At the other end of the
scale, you might enable the customer to design complete pages that
interact with the application’s services through a standard API.

If you don’t need to use
SSL, you can use custom
domain names for each
tenant in a multi-tenant
application. Each tenant
can create a CNAME
record to map his or
her domain name to
the Windows Azure
application.

https://surveys.tailspin.com
https://surveys.adatum.com
https://surveys.fabrikam.com
https://services.tailspin.com/surveys/adatum

14 chapter two

For some applications, you may want to provide customers with
the ability to enable or disable certain functionality. For example, in
the Surveys application, customers can choose whether to integrate
the application’s identity infrastructure with their own infrastructure,
and they can choose the geographic location for their surveys. This
type of configuration data can easily be stored in Windows Azure
table storage.

Other applications may require the ability to enable users to
customize the business process within the application to some degree.
Options here would include implementing a plug-in architecture
so that customers could upload their own code or using some form
of rules engine that enables process customization through
configuration.

You may also want to provide customers with ways to extend
the application without using custom code. Users of the survey
application may want to capture additional information about a
survey respondent that the standard application does not collect. This
means that users must have a mechanism for customizing the UI to
collect the data and a way of extending the data storage schema to
include the new data.

multi-tenant data architecture
Your architecture must ensure that a customer’s data is kept private
from other customers. Your application may also need to support
customized data storage.

Note: For more information about multi-tenant data
architectures, see “Multi-Tenant Data Architecture”
(http://msdn.microsoft.com/en-us/library/aa479086.aspx)
and “Architecture Strategies for Catching the Long Tail”
(http://msdn.microsoft.com/en-us/library/aa479069.aspx)
on MSDN®.

Protecting Data from Other Tenants
The perceived risk of either accidental or malicious data disclosure is
greater in a multi-tenant model. It will be harder to convince custom-
ers that their private data is safe if they know they are physically
sharing the application with other customers. However, a robust
design that logically isolates each tenant’s data can provide a suitable
level of protection. This type of design might use database schemas
where each tenant’s tables are in a separate schema, database security
features that enable you to use access control mechanisms within
the database, a partitioning scheme to separate tenant’s data, or a
combination of these approaches.

This is, of course, nothing
new. Microsoft Dynamics®
CRM is a great example
of an application that
has these levels of
customization available.

Allowing tenants to upload
their own code increases
the risk of application
failure, because you have
less control over the code
that is running in the
application. Many Software
as a Service (SaaS) systems
apply limits to this. Most
simply disallow it. Allowing
tenants to upload code or
scripts also increases the
security risks associated
with the application.

http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx

 15hosting a multi-tenant application

The security considerations just described apply to both Win-
dows Azure storage and SQL Azure™ technology platform. However,
they each have a different billing model. Usage of Windows Azure
storage is billed by the amount of storage used and by the number of
storage transactions, so from a cost perspective it doesn’t matter how
many separate storage accounts or containers you have. SQL Azure is
billed based on the number of databases you have, so it makes sense
from a cost perspective to have as many tenants as possible sharing
each instance.

Data Architecture Extensibility
There are a number of ways that you can design your data storage to
enable tenants to extend the data model to include their own custom
data. These approaches range from each tenant having a separate
schema, to providing a set of pre-defined custom columns, to more
flexible schemas that enable a tenant to add an arbitrary number of
custom fields to a table.

If you use SQL Azure, much of the application’s complexity will
result from having to work within the constraints of fixed data sche-
mas. If you are using Windows Azure table storage, the complexity
will arise from working with variable schemas. Windows Azure table
storage allows records in the same table to have completely different
structures, which allows for a great deal of flexibility at the cost of
more complexity in the code.

Custom extensions to the application’s data model should not
require changes to application code. To enable the application’s busi-
ness logic and presentation logic to integrate with the data model
extensions, you will require either a set of configuration files that
describe the extensions or code that can dynamically discover the
extensions.

Data Architecture Scalability
If you can partition your data horizontally, you will be able to scale
out your data storage. In the case of SQL Azure, if you decide that you
need to scale out, you should be able to move all of an individual
tenant’s data to a new SQL Azure instance.

Note: Partitioning data horizontally, also known as sharding,
implies taking some of the records in a table and moving them
to a new table. Partitioning data vertically implies taking some
fields from every row and placing them in a different table. For
a discussion of partitioning strategies in SQL Azure, see the
paper, SQL Azure Considerations Guide; you can download it
at http://wag.codeplex.com.

You are billed for SQL
Azure based on the number
of databases you have, and
the size of the databases.
If you transfer data in and
out of SQL Azure from
within the same data
center, there’s no data
transfer cost, but if you
transfer data in and out of
SQL Azure from outside
the data center, you’ll be
charged for the data
transfer.

Microsoft SharePoint® is
an example of an applica-
tion with a fixed schema
database that is made to
look extremely flexible.

http://wag.codeplex.com

16 chapter two

The key factor that determines the scalability of Windows Azure
table storage is the choice of partition key. All queries should include
the partition key to avoid scanning multiple partitions. For more in-
formation, see “Phase 2: Automating Deployment and Using Windows
Azure Storage” of Windows Azure Architecture Guide, Part 1, Moving
Applications to the Cloud; it is available at http://msdn.microsoft.com/
en-us/library/ff728592.aspx.

financial considerations
Your billing and cost model may affect your choice of single-tenant or
multi-tenant architecture.

Billing Customers
For an application deployed to Windows Azure, Microsoft will bill
you each month for the services (compute, storage, transactions, and
so on) that each of your Windows Azure accounts consumes. If you
are selling a service to your customers, like the Tailspin Surveys
application, you need to bill your customers for the service.

One approach to billing is to use a pay-per-use plan. With this
approach, you need to monitor the resources used by each of your
customers, calculate the cost of those resources, and apply a markup
to ensure you make a profit. If you use a single-tenant architecture
and create a separate Windows Azure account for each of your cus-
tomers, it’s easy to determine how much an individual customer is
costing in terms of compute time, storage, and so on, and then to bill
the customer appropriately. However, for a single-tenant instance
running in a separate Windows Azure account, some costs will ef-
fectively be fixed; for example, paying for a 24x7 compute instance,
or a SQL Azure instance, may make the starting cost too high for small
customers. With a multi-tenant architecture, you can share the fixed
costs between tenants, but calculating the costs per tenant is not so
straightforward and you will have to add some additional code to your
application to meter each tenant’s application usage. Furthermore,
customers will want some way of tracking their costs, so you will need
to be transparent about how the costs are calculated and provide
access to the captured usage data.

It is difficult to predict exactly what usage an individual sub-
scriber will make of the service; for the Surveys application, Tailspin
cannot predict how many surveys a subscriber will create or how
many survey answers the subscriber will receive in a specified period.
If Tailspin adopts a billing model that offers the Surveys service for a
fixed monthly fee, the profit margin will vary between subscribers
(and could even be negative in some cases). By making Surveys a multi-
tenant application, Tailspin can smooth out the differences in usage
patterns between subscribers, making it much easier to predict costs

http://msdn.microsoft.com/

 17hosting a multi-tenant application

and revenue, and reduce the risk of making a loss. The more customers
you have, the easier it becomes to predict aggregate usage patterns
for a service.

From the customer’s perspective, charging a fixed fee for the
service means that the customer knows in advance exactly what their
costs will be for the next billing period. This also means that you have
a much simpler billing system. Some costs, like those associated with
storage and transactions, will be variable and depend on the number
of customers you have and how they use the service. Other costs,
such as compute costs or the cost of a SQL Azure instance, will ef-
fectively be fixed. To be profitable, you need to sell sufficient sub-
scriptions to cover both the fixed and variable costs.

If your customer base is a mixture of heavy users and light users,
a standard monthly charge may be too high to attract smaller users. In
this scenario, you’ll need a variation on the second approach and offer
a range of packages for different usage levels. For example, in the
Surveys application, Tailspin might offer a light package at a lower
monthly cost than the standard package. The light package may limit
the number of surveys a customer can create or the number of survey
responses that a customer can collect each month.

Offering a product where different customers can choose differ-
ent features and/or quotas requires that you architect and design the
product with that in mind. Such a requirement affects the product at
all levels: presentation, logic, and data. You’ll also need to undertake
some market research to determine the expected demand for the dif-
ferent packages at different costs to try to estimate your expected
revenue stream and costs.

Managing Application Costs
You can divide the running costs of a Windows Azure application into
fixed and variable costs. For example, if the cost of a compute node is
$0.12/hour, the cost of running two compute nodes (to gain redun-
dancy) 24x7 for one month is a fixed cost of approximately $180. If
this is a multi-tenant application, all the tenants share that cost. To
reduce the cost per tenant, you should try to have as many tenants as
possible sharing the application, without causing a negative impact on
the performance of the application. You also need to analyze the ap-
plication’s performance characteristics to determine whether scaling
up by using larger compute nodes or scaling out by adding additional
instances would be the best approach for your application when de-
mand increases.

Variable costs will depend on how many customers you have or
how those customers use the application. In the Tailspin Surveys ap-
plication, the number of surveys and the number of respondents for
each survey will largely determine monthly storage and transaction

18 chapter two

costs. Whether your application is single-tenant or multi-tenant will
not affect the cost per tenant; regardless of the model, a specific ten-
ant will require the same amount of storage and use the same number
of compute cycles. To manage these costs, you must make sure that
your application uses these resources as efficiently as possible.

Note: For more information about estimating Windows Azure
costs, see Chapter 4, “How Much Will It Cost?”, of the book,
Windows Azure Architecture Guide, Part 1, Moving
Applications to the Cloud; it is available at http://msdn.
microsoft.com/en-us/library/ff728592.aspx.

You can find additional information about storage costs in
this post on the Windows Azure Storage Team blog:
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/
07/09/understanding-windows-azure-storage-billing-bandwidth-
transactions-and-capacity.aspx.

http://msdn
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/

19

This chapter discusses some of the challenges faced by the developers
at Tailspin when they were designing the customer-facing compo-
nents of the Surveys application. The chapter focuses on the ways in
which customers will interact with the application and begins by
describing Tailspin’s choice of URLs for accessing the application and
its use of Secure Sockets Layer (SSL).

Tailspin plans to offer subscriptions to the Surveys application to
a range of users, from large enterprises to individuals. These subscrib-
ers could be based anywhere in the world and may want to run
surveys in other geographic locations. This chapter describes how
Tailspin designed the Surveys application to be “geo-aware.” The
chapter also looks at how subscribers are authenticated and autho-
rized, and how the application can use the Windows Azure Content
Delivery Network (CDN) to improve the user experience.

DNS Names, Certificates, and SSL
in the Surveys Application

In Chapter 1, “The Tailspin Scenario,” you saw how the Surveys ap-
plication has three different groups of users. This section describes
how Tailspin can use Domain Name System (DNS) entries to manage
the URLs that each group can use to access the service, and how
Tailspin plans to use SSL to protect some elements of the Surveys
application.

web roles in the surveys application
Tailspin uses web roles to deliver the user interface (UI) elements of
the Surveys application. This section describes the design and imple-
mentation of these web roles.

3 Accessing the Surveys
Application

20 chapter three

Goals and Requirements
Three distinct groups of users will access the Surveys application:
administrators at Tailspin who will manage the application, subscribers
who will be creating their own custom surveys and analyzing the re-
sults, and users who will be filling in their survey responses. The first
two groups will account for a very small proportion of the total num-
ber of users at any given time; the vast majority of users will be people
who are filling in surveys. A large survey could have hundreds of
thousands of users filling out a survey, while a subscriber might create
a new survey only every couple of weeks. Furthermore, the numbers
of users filling out surveys will be subject to sudden, large, short-lived
spikes as subscribers launch new surveys. In addition to the different
scalability requirements that arise from the two usage profiles, other
requirements, such as security, will also vary.

Subscribers and administrators will be subject to the authentica-
tion and authorization controls that are described later in this chapter.
It is a key requirement of the application to protect survey designs
and results from unauthorized access, and the application will use a
claims-based infrastructure to achieve this goal. Although some sur-
veys might be designed for a closed user group that will require some
form of authentication, many surveys may be open to the general
public and will be accessible without any form of log on. Additionally,
all access to the application by subscribers and administrators will use
HTTPS to protect the data transferred between the application and
the client. Public surveys do not require HTTPS, and this enables the
use of custom URLs to access these surveys by using custom DNS
CNAME entries.

Subscribers and survey respondents may be in different geo-
graphical locations. For example, a subscriber may be in the U.S. but
wanting to perform some market research in Europe. Tailspin can
minimize the latency for survey respondents by enabling subscribers
to host their surveys in a data center located in an appropriate geo-
graphical region. However, subscribers may need to analyze the results
collected from these surveys in their own geographical location.

Overview of the Solution
To make it easy for the Surveys application to meet the requirements
outlined earlier, the developers at Tailspin decided to use separate
web roles. One web role will contain the subscriber and administrative
functionality, while a separate web role will host the surveys them-
selves. Tailspin can tune each web role to support its usage profile
independently of the other.

Having multiple web roles in the same hosted service affects the
choice URLs that you can use to access the application. Windows
Azure assigns a single DNS name (for example, tailspin.cloudapp.net)

There are three distinct
groups of users who will use
the Surveys application.

The Windows Azure™
technology platform enables
you to deploy role instances
to data centers in different
geographic locations.

Tailspin can host both the
subscriber and survey web
roles in different geograph-
ical locations. We’ll talk
more about this in the
section “Geo Location”
later in this chapter.

 21accessing the surveys application

to a hosted service, which means that different websites within the
same hosted service must have different port numbers. For example
two websites within Tailspin’s hosted service could have the ad-
dresses listed in the following table.

Site A Site B

http://tailspin.cloudapp.net:80 http://tailspin.cloudapp.net:81

Because of the specific security requirements of the Surveys applica-
tion, Tailspin decided to use the following URLs:
•	 https://tailspin.cloudapp.net
•	 http://tailspin.cloudapp.net

The next sections describe each of these.

https://tailspin.cloudapp.net
This HTTPS address uses the default port 443 to access the web role
that hosts the administrative functionality for both subscribers and
Tailspin. Because an SSL certificate protects this site, it is possible to
map only a single, custom DNS name. Tailspin plans to use an address
such as https://surveys.tailspin.com to access this site.

http://tailspin.cloudapp.net
This HTTP address uses the default port 80 to access the web role
that hosts the surveys. Because there is no SSL certificate, it is possible
to map multiple DNS names to this site. Tailspin will configure a de-
fault DNS name such as http://surveys.tailspin.com to access the
surveys, but individual tenants could create their own CNAME entries
to map to the site; for example, http://surveys.adatum.com, http://
surveys.tenant2.org, or http://survey.tenant3.co.de.

It would also be possible to create separate hosted services for
individual tenants that would also enable subscribers to use custom
URLs for their surveys. However, this approach would complicate the
provisioning process and for small subscribers, it would not be cost
effective. Tailspin plans to scale out the application by adding more
role instances within a hosted service.

Inside the Implementation
To implement the two different websites within a single hosted ser-
vice, the developers at Tailspin defined two web roles in the solution.
The first website, named TailSpin.Web, is an MVC 2 project that
handles the administrative functionality within the application. This
website requires authentication and authorization, and users access it
using HTTPS. The second website, named Tailspin.Web.Survey.Public,
is an MVC 2 project that handles users filling out surveys. This website
is public, and users access it using HTTP.

Remember, you can use
DNS CNAME entries to
map custom domain names
to the default DNS names
provided by Windows
Azure.

Tailspin will need to
publish some guidance to
subscribers that describes
how they can set up their
CNAMEs in their DNS
settings.

http://tailspin.cloudapp.net:80
http://tailspin.cloudapp.net:81
https://tailspin.cloudapp.net
http://tailspin.cloudapp.net
https://tailspin.cloudapp.net
https://surveys.tailspin.com
http://tailspin.cloudapp.net
http://surveys.tailspin.com
http://surveys.adatum.com
http://surveys.tenant2.org
http://surveys.tenant2.org
http://survey.tenant3.co.de

22 chapter three

The following code example shows the contents of an example
ServiceDefinition.csdef file and the definitions of the two web roles:

<ServiceDefinition name=”TailSpin.Cloud” xmlns=…>
 <WebRole name="TailSpin.Web" enableNativeCodeExecution="true">
 <InputEndpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="80" />
 <InputEndpoint name="HttpsIn" protocol="https" port="443"
 certificate="tailspinweb" />
 </InputEndpoints>
 <ConfigurationSettings>
 <Setting name="DataConnectionString" />
 <Setting name="DiagnosticsConnectionString" />
 </ConfigurationSettings>
 <Certificates>
 <Certificate name="tailspinweb"
 storeLocation="LocalMachine" storeName="My" />
 </Certificates>
 </WebRole>
 <WebRole name="TailSpin.Web.Survey.Public">
 <InputEndpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="80" />
 <InputEndpoint name="HttpsIn" protocol="https" port="443"
 certificate="tailspinpublicweb" />
 </InputEndpoints>
 <ConfigurationSettings>
 <Setting name="DiagnosticsConnectionString" />
 <Setting name="DataConnectionString" />
 </ConfigurationSettings>
 <Certificates>
 <Certificate name="tailspinpublicweb"
 storeLocation="LocalMachine" storeName="My" />
 </Certificates>
 </WebRole>
</ServiceDefinition>

Note: This example ServiceDefinition.csdef file does not exactly
match the file in the downloadable solution, which uses different
names for the certificates.

Although subscribers can access the Subscribers website (defined in
the TailSpin.Web web role) only by using HTTPS, Tailspin has also

 23accessing the surveys application

defined an HTTP endpoint. They will use the URL Rewrite Module for
IIS to forward all traffic to the HTTPS endpoint on port 443. By defin-
ing the HTTP endpoint now, in the future Tailspin can choose to add
non-HTTPS content to the website without deleting the Surveys
application and then re-deploying it. The public website also uses the
URL Rewrite Module and uses it to forward HTTPS traffic to the
HTTP endpoint on port 80 for similar reasons.

Note: Remember, you may want to use different SSL certificates
when you are testing the application on the development fabric.
You must make sure that the configuration files reference the
correct certificates before you publish the application to Windows
Azure.

For more information about managing the deployment, see
Chapter 7, “Application Life Cycle Management,” of the book,
Windows Azure Architecture Guide, Part 1, Moving Applications
to the Cloud. It is available at http://msdn.microsoft.com/en-us/
library/ff728592.aspx.

In addition to the two web role projects, the solution also contains a
worker role project and a library project named TailSpin.Web.Survey.
Shared that contains code shared by both web roles and the worker
role. This shared code includes the model classes and the data access
layer.

Geo-Location
Windows Azure allows you to select a geographic location for your
Windows Azure services so that you can host your application close
to your users. This section describes how Tailspin uses this feature in
the Surveys application.

goals and requirements
Tailspin wants to allow subscribers to the Surveys service to be able
to specify which geo-specific instance of the Surveys application
they’d like to use. For example, a U.S.–based customer would probably
want to choose a U.S.–based service, and a European customer would
probably want to choose a European-based service. However, it’s pos-
sible that a subscriber might want to run a survey in a different geo-
graphic region than the one the subscriber is located in. Figure 1
shows how a U.S.–based subscriber might want to run a survey in
Europe:

Use the URL Rewrite
Module to forward traffic
from unused endpoints.
This will future-proof your
applications in case you
later decide to use these
endpoints.

The Surveys application is
 a “geo-aware” service.

You can check the current
status of any Windows
Azure data center here:
http://www.microsoft.
com/windowsazure/
support/status/service-
dashboard.aspx.

http://msdn.microsoft.com/en-us/
http://www.microsoft

24 chapter three

figure 1
A U.S.–based subscriber running a survey in Europe

overview of the solution
Hosting a survey in a web role in a different geographic location
doesn’t, by itself, mean that people filling out the survey will see the
best response times when they use the site. To render the survey, the
application must retrieve the survey definition from storage, and the
application must save the completed survey results to storage. If, in
the example shown in Figure 1, the application storage is in the U.S.
data center, there is little benefit to European customers accessing a
website hosted in the European data center.

Figure 2 shows how Tailspin designed the application to handle
this scenario and resolve the issue just described.

figure 2
Hosting a survey in a different geographic location

Us Subscriber

Windows Azure US Windows Azure Europe

TailSpin Core

Subscriber
website

Public
website

Public
website

Us Subscriber

Windows Azure US Windows Azure Europe

TailSpin Core TailSpin
Core

Subscriber
webite Public

webite
Public
webite

1 2

4

3
3

Push Survey Definition

Synchronize

Save
Survey

Collect
Data

 25accessing the surveys application

The following describes the steps illustrated in Figure 2:
1. The subscriber designs the survey, and the application saves

the definition in storage hosted in the U.S. data center.
2. The Surveys application pushes the survey definition to

another application instance in a European data center. This
needs to happen only once.

3. Survey respondents in Europe fill out the survey, and the
application saves the data to storage hosted in the European
data center.

4. The application transfers the survey results data back to
storage in the U.S. data center, where it is available to the
subscriber for analysis.

In some scenarios, it may make sense to pre-process or summarize the
data in the region where it’s collected and transfer back only the sum-
marized data to reduce bandwidth costs. For the Surveys application,
Tailspin decided to move all the data back to the subscriber’s region;
this simplifies the implementation, helps to optimize the paging fea-
ture, and ensures that each response is moved between data centers
only once.

Note: When you deploy a Windows Azure application, you can
select the subregion (which, at the moment, determines the data
center) where you want to host the application. You can also define
affinity groups that you can use to group inter-dependent Win-
dows Azure applications and storage accounts together in order to
improve performance and reduce costs. Performance improves
because Windows Azure co-locates members of the affinity group
in the same data center. This reduces costs because data transfers
within the same data center do not incur bandwidth charges.
Affinity groups offer a small advantage over simply selecting the
same subregion for your hosted services, because Windows Azure
makes a “ best effort” to optimize the location of those services.

Authentication and Authorization
This section describes how Tailspin has implemented authentication
and authorization in the Surveys application.

Note: For more information about this scenario, see Chapter
6, “Federated Identity with Multiple Partners,” in the book, A
Guide to Claims-Based Identity and Access Control. This book
is available for download at http://msdn.microsoft.com/en-us/
library/ff423674.aspx.

We’ll talk more about how
the application moves
survey data between data
centers in Chapter 5,
“Working with Data in
the Surveys Application.”

.

http://msdn.microsoft.com/en-us/

26 chapter three

goals and requirements
The Tailspin Surveys application targets a wide range of customers,
from large enterprises all the way down to individuals. All customers
of the Surveys application will require authentication and authoriza-
tion services, but they will want to implement these services
differently. For example, a large enterprise customer is likely to require
integration with their existing identity infrastructure, a smaller
customer may not be in a position to integrate their systems and will
require a basic security system as part of the Surveys application,
and an individual may want to reuse an existing identity such as a
Windows Live® ID or OpenID.

overview of the solution
Tailspin has identified three different identity scenarios that the
Surveys application must support:
•	 Organizations may want to integrate their existing identity

infrastructure and be able to manage access to the Surveys
application themselves, in order to include Surveys as a part of
the Single Sign-On (SSO) experience for their employees.

•	 Smaller organizations may require Tailspin to provide a complete
identity system because they are not able to integrate their
existing systems with Tailspin.

•	 Individuals and small organizations may want to re-use an
existing identity they have, such as a Windows Live ID or
OpenID.
To support these scenarios, Tailspin uses the WS-Federation

protocol to implement identity federation. At the time of writing,
Access Control Services (ACS) does not implement the WS-
ederation protocol, and Tailspin uses the Windows Identity Founda-
tion (WIF) implementation of this protocol.

The following three diagrams describe how the authentication
and authorization process works for each of these three scenarios.

Note: The three scenarios are all claims-based and share the
same core identity infrastructure. The only difference is the
source of the original claims.

Tailspin uses a claims-based
infrastructure to provide
the flexibility it needs to
support its diverse
customer base.

 27accessing the surveys application

figure 3
How users at a large enterprise subscriber access the Surveys application

In the scenario shown in Figure 3, users at Adatum, a large enterprise
subscriber, authenticate with Adatum’s own identity provider (step 1),
in this case Active Directory® Federation Services (ADFS). After suc-
cessfully authenticating an Adatum user, ADFS issues a token. The
Tailspin federation provider trusts tokens issued by Adatum’s ADFS
(step 2), and if necessary can perform a transformation on the claims
in the token to claims that Tailspin Surveys recognizes (step 3) before
returning a token to the user. Tailspin Surveys trusts tokens issued by
the Tailspin federation provider and uses the claims in the token to
apply authorization rules (step 4). Users at Adatum will not need to
remember separate credentials to access the Surveys application and
an administrator at Adatum will be able to configure in ADFS which
Adatum users have access to the Surveys application.

figure 4
How users at a small subscriber access the Surveys application

3

4

2

1

Transform Claims

Get Token

Get Token

Get Surveys +
Token

Trust

Trust

Federation
Provider

TailSpin
Tenants
website

Windows Azure Adatum (Big Company)

Identity Provider
(ADFS)

Adatum\ John
Browser

TailSpin
Tenants
website

3

3

2

1

Transform
Token

Get Token
(user password)

Get Token

Get Survey +
Token

Federation
Provider

User
Accounts

Trust

Trust Active Directory

Fabrikam\CharlieBrowser

Windows Azure Fabrikam (Small Company)

28 chapter three

In the scenario shown in Figure 4, users at Fabrikam, a smaller com-
pany, authenticate with the Tailspin identity provider (step 1) because
their own Active Directory can’t issue tokens that will be understood
by the Tailspin federation provider. Other than the choice of identity
provider, this approach is the same as the one used for Adatum. The
downside of this approach for Fabrikam users is that they must re-
member a separate password to access the Surveys application.

Tailspin plans to implement this scenario by using an ASP.NET
Membership Provider to manage the user accounts and to use a secu-
rity token service (STS) that integrates with the membership provider.

Note: For guidance on how to implement this scenario, take a look
at the Starter STS project at http://startersts.codeplex.com.

figure 5
How an individual subscriber accesses the Surveys application

For individual users, the process is again very similar. In the scenario
shown in Figure 5, the Tailspin federation provider is configured to
trust tokens issued by a third-party provider such as Windows Live ID
or OpenID (step 1). When the user tries to access their surveys, the
application will redirect them to their external identity provider for
authentication.

Tailspin plans to build a protocol translation STS to convert the
various protocols that the third-party providers use to the protocol
used by the Surveys application.

3

1

4

2
Federation
Provider

Tail Spin
Tenants
website

Transform Claims

Windows Azure

Mark
Working From

Home

Live ID

Trust

Get Token

Get Surveys
+

Token

Authenticate

Trust

http://startersts.codeplex.com

 29accessing the surveys application

Note: For guidance on how to implement this scenario, take a look
at the project named “protocol-bridge-claims-provider” at http://
github.com/southworks/protocol-bridge-claims-provider.

inside the implementation
Now is a good time to walk through the code that authentication and
authorization in more detail. As you go through this section, you may
want to download the Microsoft® Visual Studio® development sys-
tem solution for the Tailspin Surveys application from http://wag.
codeplex.com/. The diagram in Figure 6 will be useful to help you keep
track of how this process works as you look at the detailed descrip-
tion and code samples later in this chapter.

figure 6
Federation with multiple partners sequence diagram

1 2 3

45

6

7
8

9

Browser Authentication
Filter surveys Federation

Authentication
Module

Home Issuer

Redirect

Redirect

ctx = surveys
realm, issuer()

Post
realm
Token()

Surveys()

Issue
Token

Authorize

Get Page

Validate
Token

* Everything in this box only occurs
when there is no session, and the user
must be authenticated

The sequence shown in this diagram
applies to all three scenarios. In the
context of the diagram, the Issuer is the
Tailspin federation provider, so step 3
includes redirecting to another issuer to
handle the authentication.

http://github.com/southworks/protocol-bridge-claims-provider
http://github.com/southworks/protocol-bridge-claims-provider
http://wag

30 chapter three

For clarity, Figure 6 shows the “logical” sequence, not the “physical”
sequence. Wherever the diagram has an arrow with a Redirect label,
this actually sends a redirect response back to the browser, and the
browser then sends a request to wherever the redirect message
specifies.

The following describes the steps illustrated in Figure 6:
1. The process starts when an unauthenticated user sends

a request for a protected resource; for example the
adatum/surveys page. This invokes a method in the
SurveysController class.

2. The AuthenticateAndAuthorizeAttribute attribute that
implements the MVC IAuthorizationFilter interface is
applied to this controller class. Because the user has not yet
been authenticated, this will redirect the user to the Tailspin
federation provider at https://localhost/TailSpin.SimulatedIs-
suer with the following querystring parameter values:

wa. Wsignin1.0

wtrealm. https://tailspin.com

wctx. https://127.0.0.1:444/survey/adatum

whr. http://adatum/trust

wreply. https://127.0.0.1:444/federationresult

The following code example shows the AuthenticateUser
method in the AuthenticateAndAuthorizeAttribute class
that builds the query string.

private static void AuthenticateUser(
 AuthorizationContext context)
{
 var tenantName =
 (string) context.RouteData.Values[“tenant”];

 if (!string.IsNullOrEmpty(tenantName))
 {
 var returnUrl =
 GetReturnUrl(context.RequestContext);

 // User is not authenticated and is entering
 // for the first time.
 var fam = FederatedAuthentication
 .WSFederationAuthenticationModule;
 var signIn = new SignInRequestMessage(
 new Uri(fam.Issuer), fam.Realm)

https://localhost/TailSpin.SimulatedIs-suerwith
https://localhost/TailSpin.SimulatedIs-suerwith
https://localhost/TailSpin.SimulatedIs-suerwith
https://tailspin.com
https://127.0.0.1:444/survey/adatum
http://adatum/trust
https://127.0.0.1:444/federationresult

 31accessing the surveys application

 {
 Context = returnUrl.ToString(),
 HomeRealm =
 RetrieveHomeRealmForTenant(tenantName)
 };

 // In the Windows Azure environment,
 // build a wreply parameter for the SignIn
 // request that reflects the real address of
 // the application.
 HttpRequest request = HttpContext.Current.Request;
 Uri requestUrl = request.Url;

 StringBuilder wreply = new StringBuilder();
 wreply.Append(requestUrl.Scheme); // HTTP or HTTPS
 wreply.Append(“://”);
 wreply.Append(request.Headers[“Host”] ??
 requestUrl.Authority);
 wreply.Append(request.ApplicationPath);

 if (!request.ApplicationPath.EndsWith(“/”))
 {
 wreply.Append(“/”);
 }

 wreply.Append(“FederationResult”);

 signIn.Reply = wreply.ToString();

 context.Result = new
 RedirectResult(signIn.WriteQueryString());
 }
}

3. The Issuer, in this case the Tailspin simulated issuer, authenti-
cates the user and generates a token with the requested
claims. In the Tailspin scenario, the Tailspin federation
provider uses the value of the whr parameter to delegate the
authentication to another issuer, in this example, to the
Adatum issuer. If necessary, the Tailspin federation issuer can
transform the claims it receives from the issuer to claims that
the Tailspin Surveys application understands. The following
code from the FederationSecurityTokenService class shows
how the Tailspin simulated issuer transforms the Group
claims in the token from the Adatum issuer.

32 chapter three

switch (issuer.ToUpperInvariant())
{
 case “ADATUM”:
 var adatumClaimTypesToCopy = new[]
 {
 WSIdentityConstants.ClaimTypes.Name
 };
 CopyClaims(input, adatumClaimTypesToCopy, output);
 TransformClaims(input,
 AllOrganizations.ClaimTypes.Group,
 Adatum.Groups.MarketingManagers,
 ClaimTypes.Role,
 TailSpin.Roles.SurveyAdministrator, output);
 output.Claims.Add(
 new Claim(TailSpin.ClaimTypes.Tenant,
 Adatum.OrganizationName));
 break;
 case “FABRIKAM”:
 …
 default:
 throw new InvalidOperationException(
 “Issuer not trusted.”);
}

Note: The sample code in the simulated issuer for Tailspin
contains some hard-coded names, such as Adatum and
Fabrikam, and some hard-coded claim types. In a real issuer,
these values would be retrieved from a configuration file or
store.

4. The Tailspin federation provider then posts the token and
the value of the wctx parameter (https://127.0.0.1:444/
survey/adatum) back to the address in the wreply parameter
(https://127.0.0.1:444/federationresult). This address is
another MVC controller (that does not have the
Authen-ticateAndAuthorizeAttribute attribute applied).
The following code example shows the FederationResult
method in the ClaimsAuthenticationController controller.

[RequireHttps]
public class ClaimsAuthenticationController : Controller
{
 [ValidateInput(false)]
 [HttpPost]
 public ActionResult FederationResult()

https://127.0.0.1:444/survey/adatum
https://127.0.0.1:444/survey/adatum
https://127.0.0.1:444/federationresult

 33accessing the surveys application

 {
 var fam = FederatedAuthentication
 .WSFederationAuthenticationModule;
 if (fam.CanReadSignInResponse(
 System.Web.HttpContext.Current.Request, true))
 {
 string returnUrl = GetReturnUrlFromCtx();

 return this.Redirect(returnUrl);
 }

 return this.RedirectToAction(
 “Index”, “OnBoarding”);
 }

5. The WSFederationAuthenticationModule validates the
token by calling the CanReadSignInResponse method.

6. The ClaimsAuthenticationController controller retrieves
the value of the original wctx parameter and issues a redirect
to that address.

7. This time, when the request for the adatum/surveys page
goes through the AuthenticateAndAuthorizeAttribute
filter, the user has been authenticated. The following code
example shows how the filter checks whether the user is
authenticated.

public void OnAuthorization(
 AuthorizationContext filterContext)
{
 …

 if (!filterContext.HttpContext.User
 .Identity.IsAuthenticated)
 {
 AuthenticateUser(filterContext);
 }
 else
 {
 this.AuthorizeUser(filterContext);
 }
}

8. The AuthenticateAndAuthorizeAttribute filter then applies
any authorization rules. In the Tailspin Surveys application,
the AuthorizeUser method verifies that the user is a member

34 chapter three

of one of the roles listed where the AuthenticateAnd
Authorize attribute decorates the MVC controller, as shown
in the following code example.
[AuthenticateAndAuthorize(Roles = “Survey Administrator”)]
[RequireHttps]
public class SurveysController : TenantController
{
 …
}

9. The controller method finally executes.

protecting session tokens in windows
azure

By default, when you use the Windows Identity Foundation (WIF)
framework to manage your identity infrastructure, it encrypts the
contents of the cookies that it sends to the client by using the Win-
dows Data Protection API (DPAPI). Using the DPAPI for cookie en-
cryption is not a workable solution for an application that has multiple
role instances because each role instance will have a different key, and
the Windows Azure load balancer could route a request to any in-
stance. You must use an encryption mechanism, such as RSA, that uses
shared keys. The following code example shows how the Surveys
application configures the session security token handler to use RSA
encryption.

Note: For more information about using the DPAPI and shared
key encryption mechanisms to encrypt configuration settings, see
“How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
DPAPI” on MSDN (http://msdn.microsoft.com/en-us/library/
ff647398.aspx).

For more information about the DPAPI, see “Windows Data
Protection” on MSDN (http://msdn.microsoft.com/en-us/library/
ms995355.aspx).

private void OnServiceConfigurationCreated(object sender,
 ServiceConfigurationCreatedEventArgs e)
{
 var sessionTransforms =
 new List<CookieTransform>(
 new CookieTransform[]
 {
 new DeflateCookieTransform(),
 new RsaEncryptionCookieTransform(
 e.ServiceConfiguration.ServiceCertificate),

An ASP.NET web applica-
tion running in a web farm
would also need to use
shared key encryption
instead of DPAPI.

http://msdn.microsoft.com/en-us/library/ff647398.aspx
http://msdn.microsoft.com/en-us/library/ff647398.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://msdn.microsoft.com/en-us/library/ms995355.aspx

 35accessing the surveys application

 new RsaSignatureCookieTransform(
 e.ServiceConfiguration.ServiceCertificate)
 });
 var sessionHandler = new
 SessionSecurityTokenHandler(sessionTransforms.AsReadOnly());
 e.ServiceConfiguration.SecurityTokenHandlers.AddOrReplace(
 sessionHandler);
}

The Application_OnStart method in the Global.asax.cs file hooks up
this event handler to the FederatedAuthentication module.

Content Delivery Network
The Windows Azure Content Delivery Network (CDN) allows you to
have binary large object (BLOB) content cached at strategic locations
around the world in order to make that content available with the
maximum possible bandwidth to users and minimize any latency. The
CDN is designed to be used with BLOB content that is relatively
static. For the Surveys application, the developers at Tailspin have
identified two scenarios where they could use the CDN:

The CDN enables you to have data that is stored in BLOBs cached at
strategic locations around the world.
•	 Tailspin is planning to commission a set of training videos with

titles such as “Getting Started with the Surveys Application,”
“Designing Great Surveys,” and “Analyzing your Survey Results.”

•	 Hosting the custom images and style sheets that subscribers
upload.

In both of these scenarios, users will access the content many times
before it’s updated. The training videos are likely to be refreshed only
when the application undergoes a major upgrade, and Tailspin expects
subscribers to upload standard corporate logos and style sheets that
reflect corporate branding. Both of these scenarios will also account
for a significant amount of bandwidth used by the application. Online
videos will require sufficient bandwidth to ensure good playback qual-
ity, and every request to fill out a survey will result in a request for a
custom image and style sheet.

One of the requirements for using the CDN is that the content
must be in a BLOB container that you configure for public, anony-
mous access. Again, in both of the scenarios, the content is suitable
for unrestricted access.

For information about the current pricing for the CDN, visit the
Windows Azure Platform website at http://www.microsoft.com/
windowsazure/offers/.

http://www.microsoft.com/

36 chapter three

Note: For data cached on the CDN, you are charged for outbound
transfers based on the amount of bandwidth you use and the
number of transactions. You are also charged at the standard
Windows Azure BLOB storage rates for the transfers that move
data from BLOB storage to the CDN. Therefore, it makes sense
to use the CDN for relatively static content. With highly dynamic
content, you could, in effect pay double, because each request
for data from the CDN triggers a request for the latest data from
BLOB storage.

the solution
To use the CDN with the Surveys application, Tailspin will have to
make a number of changes to the application. The following sections
describe these changes. This section describes the planned solution;
the current version of the Surveys application does not include the
use of the CDN.

Setting the Access Control for the BLOB Containers
Any BLOB data that you want to host on the CDN must be in a BLOB
container with permissions set to allow full public read access. You
can set this option when you create the container by calling the
BeginCreate method of the CloudBlobContainer class or by calling
the SetPermissions method on an existing container. The following
code shows an example of how to set the permissions for a container.

protected void SetContainerPermissions(String containerName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.FromConfigurationSetting(
 "DataConnectionString");
 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();

 CloudBlobContainer cloudBlobContainer =
 new CloudBlobContainer(containerName, cloudBlobClient);

 BlobContainerPermissions blobContainerPermissions =
 new BlobContainerPermissions();
 blobContainerPermissions.PublicAccess =
 BlobContainerPublicAccessType.Container;
 cloudBlobContainer.SetPermissions(blobContainerPermissions);
}

 37accessing the surveys application

Notice that the permission type used to set full public access is
BlobContainerPublicAccessType.Container.

Configuring the CDN and Storing the Content
You configure the CDN at the level of a Windows Azure storage ac-
count through the Windows Azure Developer Portal. After you en-
able CDN delivery for a storage account, any data in public BLOB
containers is available for delivery by the CDN.

The application must place all the content to be hosted on the
CDN into BLOBs in the appropriate containers. In the Surveys appli-
cation, media files, custom images, and style sheets can all be stored
in these BLOBs. For example, if a training video is packaged with a
player application in the form of some HTML files and scripts, all of
these related files can be stored as BLOBs in the same container.

Note: You must be careful if scripts or HTML files contain relative
paths to other files in the same BLOB container because the path
names will be case sensitive. This is because there is no real folder
structure within a BLOB container, and any “ folder names” are just
a part of the file name in a single, flat namespace.

Configuring URLs to Access the Content
Windows Azure allocates URLs to access BLOB data based on the
account name and the container name. For example, if Tailspin created
a public container named “video” for hosting their training videos, you
could access the “Getting Started with the Surveys Application” video
directly in Windows Azure BLOB storage at http://tailspin.blob.core.
windows.net/video/gettingstarted.html. This assumes that the get-
tingstarted.html page is a player for the media content. The CDN
provides access to hosted content using a URL in the form http://<uid>.
vo.msecnd.net/, so the Surveys training video would be available on
the CDN at http://<uid>.vo.msecnd.net/video/gettingstarted.html.

Figure 7 illustrates this relationship between the CDN and BLOB
storage.

http://tailspin.blob.core

38 chapter three

figure 7
The Content Delivery Network

You can configure a CNAME entry in DNS to map a custom URL to
the CDN URL. For example, Tailspin might create a CNAME entry to
make http://files.tailspin.com/video/gettingstarted.html point to the
video hosted on the CDN. You should verify that your DNS provider
configures the DNS resolution to behave efficiently; the performance
benefits of using the CDN could be offset if the name resolution
of your custom URL involves multiple hops to a DNS authority in a
different geographic region.

Note: In addition to creating the CNAME entry for your custom
domain name in the tool you use for managing your DNS entries,
you must also configure the custom domain name in the storage
account settings. You should use the Custom Domains section on
the Summary Page in the Windows Azure Developer Portal to
complete this task.

http://tailspin.blob.core.windows.net/video
/gettingstarted.html

Windows Azure Blob Service

Get http://<uid>.vo.msecnd.net/video/gettingstarted.html

C D N

http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://tailspin.blob.core.windows.net/video/gettingstarted.htmlCDNfigure7WindowsAzureBlobServiceTheContentDeliveryNetworkYoucanconfigureaCNAMEentryinDNStomapacustomURLtotheCDNURL.Forexample
http://files.tailspin.com/video/gettingstarted.html

 39accessing the surveys application

When a user requests content from the CDN, Windows Azure auto-
matically routes their request to the closest available CDN endpoint.
If the BLOB data is found at that endpoint, it’s returned to the user. If
the BLOB data is not found at the endpoint, it’s automatically re-
trieved from BLOB storage before being returned to the user and
cached at the endpoint for future requests.

Setting the Caching Policy
All BLOBs cached by the CDN have a time-to-live (TTL) period that
determines how long they will remain in the cache before the CDN
goes back to BLOB storage to check for updated data. The default
caching policy used by the CDN uses an algorithm to calculate the
TTL for cached content based on when the content was last modified
in BLOB storage. The longer the content has remained unchanged in
BLOB storage, the greater the TTL, up to a maximum of 72 hours.

Note: The CDN retrieves content from BLOB storage only if it is
not in the endpoint’s cache, or if it has changed in BLOB storage.

You can also explicitly set the TTL by using the CacheControl prop-
erty of the BlobProperties class. The following code example shows
how to set the TTL to two hours.

blob.Properties.CacheControl = “max-age=7200”;

More Information
For more information about using CNAME entries in DNS, see the
post, “Custom Domain Names in Windows Azure,” on Steve Marx’s
blog:

http://blog.smarx.com/posts/custom-domain-names-in-
windows-azure

For more information about the claims-based authentication and au-
thorization model used in the Surveys application, see Chapter 6,
“Federated Identity with Multiple Partners,” of the book, A Guide to
Claims-Based Identity and Access Control. You can download a PDF
copy of this book from MSDN:

If the BLOB data is not
found at the endpoint, you
will incur Windows Azure
storage charges when the
CDN retrieves the data
from blob storage.

http://blog.smarx.com/posts/custom-domain-names-in-windows-azure
http://blog.smarx.com/posts/custom-domain-names-in-windows-azure
http://blog.smarx.com/posts/custom-domain-names-in-windows-azure

40 chapter three

http://msdn.microsoft.com/en-us/library/ff423674.aspx
For a walkthrough of how to secure an ASP.NET site on Windows
Azure with WIF, see “Exercise 1: Enabling Federated Authentication
for ASP.NET applications in Windows Azure” on Channel 9:

http://channel9.msdn.com/learn/courses/Azure/IdentityAzure/
WIFonWAZLab/Exercise-1-Enabling-Federated-Authentication-
for-ASPNET-applications-in-Windows-Azure/

For more information about the CDN, see “Delivering High-Band-
width Content with the Windows Azure Content Delivery Network”
on MSDN:

http://msdn.microsoft.com/en-us/library/ee795176.aspx

For information about an application that uses the CDN, see the post,
“EmailTheInternet.com: Sending and Receiving Email in Windows
Azure,” on Steve Marx’s blog:

http://blog.smarx.com/posts/emailtheinternet-com-sending-and-
receiving-email-in-windows-azure

For an episode of Cloud Cover that covers CDN, see Channel 9:
http://channel9.msdn.com/shows/Cloud+Cover/Cloud-Cover-
Episode-4-CDN/

http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://channel9.msdn.com/learn/courses/Azure/IdentityAzure/
http://msdn.microsoft.com/en-us/library/ee795176.aspx
http://blog.smarx.com/posts/emailtheinternet-com-sending-and-receiving-email-in-windows-azure
http://blog.smarx.com/posts/emailtheinternet-com-sending-and-receiving-email-in-windows-azure
http://blog.smarx.com/posts/emailtheinternet-com-sending-and-receiving-email-in-windows-azure
http://channel9.msdn.com/shows/Cloud+Cover/Cloud-Cover-Episode-4-CDN/
http://channel9.msdn.com/shows/Cloud+Cover/Cloud-Cover-Episode-4-CDN/

41

This chapter examines architectural and implementation issues in the
Surveys application from the perspective of building a multi-tenant
application. Questions such as how to partition the application and
how to bill customers for their usage are directly relevant to a multi-
tenant architecture. Questions such as how to make the application
scalable and how to handle the on-boarding process for new subscrib-
ers are relevant to both single-tenant and multi-tenant architectures,
but they involve some special considerations in multi-tenant model.

This chapter describes how Tailspin resolved these questions for
the Surveys application. For other applications, different choices may
be appropriate.

Partitioning the Application
Chapter 5, “Data Storage in the Surveys Application,” describes how
the Surveys application data model partitions the data by subscriber.
This section describes how the Surveys application uses MVC routing
tables and areas to make sure that a subscriber sees only his or her
own data.

the solution
The developers at Tailspin decided to use the path in the application’s
URL to indicate which subscriber is accessing the application. For the
Subscriber website, users must authenticate before they can access
the application, for the public Surveys website, the application doesn’t
require authentication.

The following are three sample paths on the Subscriber website:
•	 /survey/adatum/newsurvey
•	 /survey/adatum/newquestion
•	 /survey/adatum

4 Building a Scalable,
Multi-Tenant Application

for Windows Azure

The URL path identifies
the functional area in the
application, the subscriber,
and the action.

42 chapter four

The following are two example paths on the public Surveys website:
•	 /survey/adatum/launch-event-feedback
•	 /survey/adatum/launch-event-feedback/thankyou

The application uses the first element in the path to indicate the
different areas of functionality within the application. All the preced-
ing examples relate to surveys, but other areas relate to on-boarding
and security. The second element indicates the subscriber name, in
these examples “Adatum,” and the last element indicates the action
that is being performed, such as creating a new survey or adding a
question to a survey.

You should take care when you design the path structure for your
application that there is no possibility of name clashes that result from
a value entered by a subscriber. In the Surveys application, if a sub-
scriber creates a survey named “newsurvey,” the path to this survey is
the same as the path to the page subscribers use to create new sur-
veys. However, the application hosts surveys on an HTTP endpoint
and the page to create surveys on an HTTPS endpoint, so there is no
name clash in this particular case.

Note: The third example element of the public Surveys website,
“ launch-event-feedback,” is a “sluggified” version of the survey
title, originally “Launch Event Feedback,” to make it URL friendly.

inside the implementation
Now is a good time to walk through the code that handles the request
routing within the application in more detail. As you go through this
section, you may want to download the Microsoft® Visual Studio®
development system solution for the Tailspin Surveys application
from http://wag.codeplex.com/.

The implementation uses a combination of ASP.NET routing ta-
bles and MVC areas to identify the subscriber and map requests to the
correct functionality within the application.

The following code example shows how the public Surveys Web
site uses routing tables to determine which survey to display based on
the URL.

using System.Web.Mvc;
using System.Web.Routing;

public static class AppRoutes
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.MapRoute(
 "Home",

A slug name is a string
where all whitespace and
invalid characters are
replaced with a hyphen (-).
The term comes from the
newsprint industry and has
nothing to do with those
things in your garden!

http://wag.codeplex.com/

 43building a scalable, multi-tenant application

 string.Empty,
 new { controller = "Surveys", action = "Index" });

 routes.MapRoute(
 "ViewSurvey",
 "survey/{tenant}/{surveySlug}",
 new { controller = "Surveys", action = "Display" });

 routes.MapRoute(
 "ThankYouForFillingTheSurvey",
 "survey/{tenant}/{surveySlug}/thankyou",
 new { controller = "Surveys", action = "ThankYou" });
 }
}

The code extracts the tenant name and survey name from the URL
and passes them to the appropriate action method in the Surveys
Controller class. The following code example shows the Display
action method that handles HTTP Get requests.

[HttpGet]
public ActionResult Display(string tenant, string surveySlug)
{
 var surveyAnswer = CallGetSurveyAndCreateSurveyAnswer(
 this. surveyStore, tenant, surveySlug);

 var model = new
 TenantPageViewData<SurveyAnswer>(surveyAnswer);
 model.Title = surveyAnswer.Title;
 return this.View(model);
}

If the user requests a survey using a URL with a path value of /survey/
adatum/launch-event-feedback, the value of the tenant parameter will
be “adatum” and the value of the surveySlug parameter will be “launch-
event-feedback.” This action method uses the parameter values to
retrieve the survey definition from the store, populate the model with
this data, and pass the model to the view that renders it to the
browser.

The Subscriber website is more complex because it must handle
authentication and on-boarding new subscribers in addition to en-
abling subscribers to design new surveys and analyze survey results.
Because of this complexity, it uses MVC areas as well as a routing table.
The following code from the AppRoutes class in the TailSpin.Web
project shows how the application maps top-level requests to the
controller classes that handle on-boarding and authentication.

There is also a Display
action to handle HTTP
POST requests. This
controller action is
responsible for saving the
filled out survey data.

44 chapter four

public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(
 "OnBoarding",
 string.Empty,
 new { controller = "OnBoarding", action = "Index" });

 routes.MapRoute(
 "FederationResultProcessing",
 "FederationResult",
 new { controller = "ClaimsAuthentication",
 action = "FederationResult" });

 routes.MapRoute(
 "FederatedSignout",
 "Signout",
 new { controller = "ClaimsAuthentication",
 action = "Signout" });
 }
 …
}

The application also defines an MVC area for the core survey func-
tionality. MVC applications register areas by calling the Register
AllAreas method. In the TailSpin.Web project, you can find this call
in the Application_Start method in the Global.asax.cs file. The
RegisterAllAreas method searches the application for classes that
extend the AreaRegistration class, and then it invokes the Register
Area method. The following code example shows a part of this
method in the SurveyAreaRegistration class.

public override void RegisterArea(
 AreaRegistrationContext context)
{
 context.MapRoute(
 "MySurveys",
 "survey/{tenant}",
 new { controller = "Surveys", action = "Index" });

MVC areas enable you to
group multiple controllers
together within the
application, making it
easier work with large
MVC projects. Each area
typically represents a
different function within
the application.

 45building a scalable, multi-tenant application

 context.MapRoute(
 "NewSurvey",
 "survey/{tenant}/newsurvey",
 new { controller = "Surveys", action = "New" });

 context.MapRoute(
 "NewQuestion",
 "survey/{tenant}/newquestion",
 new { controller = "Surveys", action = "NewQuestion" });

 context.MapRoute(
 "AddQuestion",
 "survey/{tenant}/newquestion/add",
 new { controller = "Surveys", action = "AddQuestion" });

 …
}

Notice how all the routes in this routing table include the tenant
name that MVC passes as a parameter to the controller action meth-
ods.

On-Boarding for Trials and New Customers
Whenever a new subscriber signs up for the Surveys service, the ap-
plication must perform configuration tasks to enable the new ac-
count. Tailspin wants to automate as much of this process as possible
to simplify the on-boarding process for new customers and minimize
the costs associated with setting up a new subscriber. The on-board-
ing process touches many components of the Surveys application, and
this section describes how the on-boarding process affects those
components.

basic subscription information
The following table describes the basic information that every sub-
scriber provides when they sign up for the Surveys service.

The on-boarding process
touches many components in
the Surveys application.

46 chapter four

Information Example Notes

Subscriber
Name

Adatum Ltd. The commercial name of the subscriber. The
application uses this as part of customization of
the subscriber’s pages on the Surveys websites.
The Subscriber can also provide a corporate
logo.

Subscriber
Alias

adatum A unique alias used within the application to
identify the subscriber. For example, it forms
part of the URL for the subscriber’s web pages.
The application generates a value based on the
Subscriber Name, but it allows the subscriber to
override this suggestion.

Subscription
Type

Trial,
Individual,
Standard,
Premium

The subscription type determines the feature
set available to the subscriber and may affect
what additional on-boarding information must
be collected from the subscriber.

Payment
Details

Credit card
details

Apart from a trial subscription, all other
subscription types are paid subscriptions. The
application uses a third-party solution to handle
credit card payments.

Apart from credit card details, all this information is stored in Win-
dows Azure™ storage; it is used throughout the on-boarding process
and while the subscription is active.

authentication and authorization
information

The section, “Authentication and Authorization,” in Chapter 3, “Ac-
cessing the Surveys Application,” of this book describes the three
alternatives for managing access to the application. Each of these
alternatives requires different information from the subscriber as part
of the on-boarding process, and each alternative is associated with a
different subscription type. For example, the Individual subscription
type uses a social identity provider, such as Windows Live® ID or
Google ID, for authentication, and the Premium subscription type
uses the subscriber’s own identity provider.

Provisioning a Trust Relationship with the Subscriber’s
Identity Provider

One of the features of the Premium subscription type is integration
with the subscriber’s identity provider. The on-boarding process col-
lects the information needed to configure the trust relationship be-
tween subscriber’s Security Token Service (STS) and the Tailspin
federation provider (FP) STS. The following table describes this infor-
mation.

 47building a scalable, multi-tenant application

Information Example Notes

Subscriber
Federation-
Metadata
URL

https://login.adatum.
net/FederationMeta-
data/2007-06/
FederationMetadata.
xml

This should be a public endpoint. An
alternative is to enable the subscriber
to manually upload this data.

Administra-
tor identifier
(email or
Security
Account
Manager
Account
Name)

john@adatum.com The Surveys application creates a rule
in its FP to map this identifier to the
administrator role in the Surveys
application.

User
identifier
claim type

http://schemas.
xmlsoap.org/
ws/2005/05/identity/
claims/name

This is the claim type that the
subscriber’s STS will issue to identify a
user.

Subscriber’s
public key

adatum.cer The subscriber can provide a certificate
if they want to encrypt their tokens.

Claims
transforma-
tion rules

Group:Domain Users
=> Role:Survey Creator

These rules map a subscriber’s claim
types to claim types understood by the
Surveys application.

The Surveys application will use this data to add the appropriate con-
figuration information to the Tailspin FP STS. The on-boarding pro-
cess will also make the Tailspin FP federation metadata available to
the subscriber because the subscriber may need it to configure the
trust relationship in their STS.

Note: For more information, see the section, “Setup and Physical
Deployment,” on page 97 of the book, A Guide to Claims-Based
Identity and Access Control. You can download a PDF copy of this
book at http://msdn.microsoft.com/en-us/library/ff423674.aspx.

Provisioning Authentication and Authorization
for Basic Subscribers

Subscribers to the Standard subscription type cannot integrate the
Surveys application with their own STS. Instead, they can define their
own users in the Surveys application. During the on-boarding process,
they provide details for the administrator account that will have full
access to everything in their account, including billing information.
They can later define additional users who are members of the Survey
Creator role, who can only create surveys and analyze the results.

The application does not
yet implement this
functionality. Tailspin could
decide to use ADFS, ACS,
or a custom STS as its
federation provider. As
part of the on-boarding
process, the Surveys
application will have to
programmatically create
the trust relationship
between the Tailspin FP
STS and the customer’s
identity provider, and
programmatically add any
claims transformation rules
to the Tailspin STS.

https://login.adatum
mailto:john@adatum.com
http://schemas
http://msdn.microsoft.com/en-us/library/ff423674.aspx

48 chapter four

Provisioning Authentication and Authorization
for Individual Subscribers

Individual subscribers use a third-party, social identity, such as a Win-
dows Live ID, OpenID, or Google ID, to authenticate with the Surveys
application. During the on-boarding process, they must provide de-
tails of the identity they will use. This identity has administrator rights
for the account and is the only identity that can be used to access the
account.

geo location information
During the on-boarding process, the subscriber selects the geograph-
ic location where the Surveys application will host their account. The
list of locations to choose from is the list of locations where there are
currently Windows Azure data centers. This geographic location iden-
tifies the location of the Subscriber website instance that the sub-
scriber will use and where the application stores all the data associ-
ated with the account. It is also the default location for hosting the
subscriber’s surveys, although the subscriber can opt to host individ-
ual surveys in alternate geographical locations.

database information
During the sign-up process, subscribers can also opt to provision a
SQL Azure™ database to store and analyze their survey data. The
application creates this database in the same geographical locations
as the subscribers’ accounts. The application uses the subscriber alias
to generate the database name and the database user name. The ap-
plication also generates a random password. The application saves the
database connection string in Windows Azure storage, together with
the other subscriber account data.

Note: The SQL Azure database is still owned and paid for by
Tailspin. Tailspin charges subscribers for this service. For more
information about how the Surveys application uses SQL Azure,
 see the section, “Using SQL Azure,” in Chapter 5, “Working
with Data in the Surveys Application,” of this book.

Billing Customers
Tailspin plans to bill each customer a fixed monthly fee to use the
Surveys application. Customers will be able to subscribe to one of
several packages, as outlined in the following table.

You could automatically
suggest a location based
on the user’s IP address
by using a service such
as http://ipinfodb.com/
ip_location_api.php.

http://ipinfodb.com/

 49building a scalable, multi-tenant application

Subscription
type

User accounts Maximum survey
duration

Maximum
active
surveys

Trial A single user account
linked to a social identity
provider, such as Windows
Live ID or OpenID.

5 days 1

Basic A single user account
linked to a social identity
provider, such as Windows
Live ID or OpenID.

14 days 1

Standard Up to five user accounts
provided by the Surveys
application.

28 days 10

Premium Unlimited user accounts
linked from the sub-
scriber’s own identity
provider.

56 days 20

The advantage of this approach is simplicity for both Tailspin and the
subscribers, because the monthly charge is fixed for each subscriber.
Tailspin must undertake some market research to estimate the num-
ber of monthly subscribers at each level so that they can set appropri-
ate charges for each subscription level.

In the future, Tailspin wants to be able to offer extensions to the
basic subscription types. For example, Tailspin wants to enable
ubscribers to extend the duration of a survey beyond the current
maximum, or to increase the number of active surveys beyond the
current maximum. To do this, Tailspin will need to be able to capture
usage metrics from the application to help it calculate any additional
charges incurred by a subscriber. Tailspin expects that forthcoming
Windows Azure APIs that expose billing information and storage
usage metrics will simplify the implementation of these extensions.

Note: At the time of writing, the best approach to capturing usage
metrics is via logging. Several log files are useful. You can use the
Internet Information Services (IIS) logs to determine which tenant
generated the web role traffic. Your application can write custom
messages to the WADLogsTable. The sys.bandwidth_usage view in
the master database of each SQL Azure server shows bandwidth
consumption by database.

Tailspin must have good
estimates of expected
usage to be able to
estimate costs, revenue,
and profit.

50 chapter four

Customizing the User Interface
A common feature of multi-tenant applications is enabling subscribers
to customize the appearance of the application for their customers.
The current version of the Surveys application enables subscribers to
customize the appearance of their account page by using a custom
logo image. Subscribers can upload an image to their account, and the
Surveys application saves the image as part of the subscriber’s account
data in BLOB storage.

Tailspin plans to extend the customization options available to
subscribers in future versions of the application. These extensions
include customizing the survey pages with the logo and enabling sub-
scribers to upload a cascading style sheets (.css) file to customize the
appearance of their survey pages to follow corporate branding
schemes.

Tailspin are evaluating the security implications of allowing sub-
scribers to upload custom .css files and plan to limit the cascading
style sheets features that the site will support. They will implement a
scanning mechanism to verify that the .css files that subscribers up-
load do not include any of the features that the Surveys site does not
support.

The current solution allows subscribers to upload an image to a
public BLOB container named logos. As part of the upload process,
the application adds the URL for the logo image to the tenant’s BLOB
data stored in the BLOB container named tenants. The Tenant
Controller class retrieves the URL and forwards it on to the view.

Scaling Applications by Using Worker Roles
Scalability is an issue for both single-tenant and multi-tenant architec-
tures. Although it may be acceptable to allow certain operations at
certain times to utilize most of the available resources in a single-
tenant application (for example, calculating aggregate statistics over
a large dataset at 2:00 A.M.), this is not an option for most multi-
tenant applications where different tenants have different usage pat-
terns.

You can use worker roles in Windows Azure to offload resource-
hungry operations from the web roles that handle user interaction.
These worker roles can perform tasks asynchronously when the web
roles do not require the output from the worker role operations to be
immediately available.

Cascading style sheets
Behaviors are one feature
that the Surveys site will
not support.

 51building a scalable, multi-tenant application

example scenarios for worker roles
The following table describes some example scenarios where you can
use worker roles for asynchronous job processing. Not all of these
scenarios come from the Surveys application; but, for each scenario,
the table specifies how to trigger the job and how many worker role
instances it could use.

Scenario Description Solution

Update survey
statistics

The survey owner wants to
view the summary statistics
of a survey, such as the total
number of responses and
average scores for a
question. Calculating these
statistics is a resource
intensive task.

Every time a user submits a survey response, the application puts a
message in a queue named statistics-queue with a pointer to the
survey response data.

Every 10 minutes, a worker retrieves the pending messages from the
statistics-queue queue and adjusts the survey statistics to reflect
those survey responses. Only one worker instance should do the
calculation over a queue to avoid any concurrency issues when it
updates the statistics table.

Triggered by: time
Execution model: single worker

Dump survey
data to SQL
Azure database

The survey owner wants to
analyze the survey data
using a relational database.
Transferring large volumes of
data is a time consuming
operation.

The survey owner requests the back end to export the responses for
a survey. This action creates a row in a table named exports and puts
a message in a queue named export-queue pointing to that row. Any
worker can de-queue messages from export-queue and execute the
export. After it finishes, it updates the row in the exports table with
the status of the export procedure.

Triggered by: message in queue
Execution model: multiple workers

Store a survey
response

Every time a respondent
completes a survey, the
response data must be
reliably persisted to storage.
The user should not have to
wait while the application
persists the survey data.

Every time a user submits a survey response, the application writes
the raw survey data to BLOB storage and puts a message in a queue
named responses-queue.

A worker role polls the responses-queue queue and when a new
message arrives, it stores the survey response data in table storage
and puts a message in the statistics-queue queue to calculate
statistics.

Triggered by: message in queue
Execution model: multiple workers

Heartbeat Many workers running in a
grid-like system have to send
a “ping” at a fixed time
interval to indicate to a
controller that they are still
active. The heartbeat
message must be sent
reliably without interrupting
the worker’s main task.

Every minute, each worker executes a piece of code that sends a
“ping.”

Triggered by: time
Execution model: multiple workers

52 chapter four

Note: You can scale the Update Survey Statistics scenario de-
scribed in the preceding table by using one queue and one worker
role instance for every tenant or even every survey. What is
important is that only one worker role instance should process and
update data that is mutually exclusive within the dataset.

Looking at these example scenarios suggests that you can categorize
worker roles that perform background processing according to the
scheme in the following table.

Trigger Execution Types of tasks

Time Single worker An operation on a set of data that updates
frequently and requires an exclusive lock to avoid
concurrency issues. Examples include aggregation,
summarization, and denormalization.

Time Multiple
workers

An operation on a set of data that is mutually
exclusive from other sets so that there are no
concurrency issues.
Independent operations that don’t work over data
such as a “ping.”

Message
in a
queue

Single or
multiple
workers

An operation on a small number of resources (for
example, a BLOB or several table rows) that should
start as soon as possible.

Triggers for Background Tasks
The trigger for a background task could be a timer or a signal in the
form of a message in a queue. Time-based background tasks are ap-
propriate when the task must process a large quantity of data that
trickles in little by little. This approach is cheaper and will offer
higher throughput than an approach that processes each piece of data
as it becomes available. This is because you can batch the operations
and reduce the number of storage transactions required to process
the data.

If the frequency at which new items of data becomes available is
lower and there is a requirement to process the new data as soon as
possible, using a message in a queue as a trigger is appropriate.

You can implement a time-based trigger by using a Timer object
in a worker role that executes a task at fixed time interval. You can
implement a message-based trigger in a worker role by creating an
infinite loop that polls a message queue for new messages. You can
retrieve either a single message or multiple messages from the queue
and execute a task to process the message or messages.

You can pull multiple
messages from a
queue in a single
transaction.

 53building a scalable, multi-tenant application

One task type per worker role

Multiple task types per worker role

Worker Role A Worker Role B Worker Role C

Task Type A

Task Type A

Task Type B

Task Type B

Task Type C

Task Type C

Worker Role

Execution Model
In Windows Azure, you process background tasks by using worker
roles. You could have a separate worker role type for each type of
background task in your application, but this approach means that you
will need at least one separate worker role instance for each type of
task. Often, you can make better use of the available compute re-
sources by having one worker role handle multiple types of tasks, es-
pecially when you have high volumes of data because this approach
reduces the risk of under-utilizing your compute nodes. This approach,
often referred to as role conflation, involves two trade-offs. The first
trade-off balances the complexity of and cost of implementing role
conflation against the potential cost savings that result from reducing
the number of running worker role instances. The second trade-off is
between the time required to implement and test a solution that uses
role conflation and other business priorities, such as time-to-market.
In this scenario, you can still scale out the application by starting up
additional instances of the worker role. The diagrams in Figure 1 show
these two scenarios.

figure 1
Handling multiple background task types

In the scenario where you have multiple instances of a worker role
that can all execute the same set of task types, you need to distinguish
between the task types where it is safe to execute the task in multiple
worker roles simultaneously, and the task types where it is only safe
to execute the task in a single worker role at a time.

54 chapter four

To ensure that only one copy of a task can run at a time, you must
implement a locking mechanism. In Windows Azure, you could use a
message on a queue or a lease on a BLOB for this purpose. The dia-
gram in Figure 2 shows that multiple copies of Tasks A and C can run
simultaneously, but only one copy of Task B can run at any one time.
One copy of Task B acquires a lease on a BLOB and runs; other copies
of Task B will not run until they can acquire the lease on the BLOB.

figure 2
Multiple worker role instances

The MapReduce Algorithm
For some Windows Azure applications, being limited to a single task
instance for certain large calculations may have a significant impact on
performance. In these circumstances, the MapReduce algorithm may
provide a way to parallelize the calculations across multiple task in-
stances in multiple worker roles.

The original concepts behind MapReduce come from the map
and reduce functions that are widely used in functional programming
languages such as Haskell, F#, and Erlang. In the current context, Ma-
pReduce is a programming model (patented by Google), that enables
you to parallelize operations on a large dataset. In the case of the
Surveys application, you could use this approach to calculate the sum-
mary statistics by using multiple, parallel tasks instead of a single task.
The benefit would be to speed up the calculation of the summary
statistics, but at the cost of having multiple worker role instances.

Task Type A
Running

Task Type C
Running

Worker Role Instance

Task Type A
Running

Task Type B
Blocked

Task Type C
Running

Worker Role Instance

Task Type A
Running

Task Type B
Blocked

Task Type C
Running

Worker Role Instance

Task Type B
Running

Lease

Blob
(used as lock)

For the Surveys applica-
tion, speed is not a critical
factor for the calculation
of the summary statistics.
Tailspin is willing to
tolerate a delay while
this summary data is
calculated, so it does
not use MapReduce.

 55building a scalable, multi-tenant application

The following example shows how Tailspin could use this ap-
proach if it wants to speed up the calculation of the summary statis-
tics.

This example assumes that the application saves survey responses
in BLOBs that contain the data shown in Figure 3.

figure 3
Example BLOBs containing survey response data

The following table shows the initial set of data from which the ap-
plication must calculate the summary statistics. In practice, MapRe-
duce is used to process very large datasets; this example uses a very
small dataset to show how MapReduce works. This example also only
shows the summarization steps for the first multiple-choice question
and the first range question found in the survey answers, but you
could easily extend the process to handle all the questions in each
survey.

ResponseID : 3
SurveySlug : product-wishlist

ResponseID : 2
SurveySlug : book-review

ResponseID : 1
SurveySlug : travel feedback

Survey Answers
QuestionID
1
2
...

Type
MultipleChoice
Range
...

Answer
C
3
...

56 chapter four

ResponseID SurveySlug Answer to first
multiple choice
question in
survey

Answer to
first range
question in
survey

Answers
to other
questions

1 travel-
feedback C 3

…

2 book-review D 3 …

3 product-
wishlist A 4

…

4 service-
satisfaction E 3

…

5 travel-
feedback D 5

…

6 travel-
feedback C 4

…

7 purchase-
experience C 2

…

8 brand-rating B 3 …

9 book-review A 3 …

10 travel-
feedback E 4

…

11 book-review D 3 …

The first stage of MapReduce is to map the data into a format that
can be progressively reduced until you obtain the required results.
Both the map and reduce phases can be parallelized, which is why
MapReduce can improve the performance for calculations over large
datasets.

 57building a scalable, multi-tenant application

For this example, both the map and reduce phases will divide their
input into blocks of three. The map phase in this example uses four
parallel tasks, each one processes three survey result BLOBs, to build
the map shown in the following table.

AggregationID SurveySlug Number of
responses

Histogram
of first
multiple
choice
question

Average of first
range question

1.1
travel-
feedback 1 C 3

1.2 book-review 1 D 3

1.3
product-
wishlist 1 A 4

2.1
service-
satisfaction 1 E 3

2.2
travel-
feedback 2 CD 4.5

3.1
purchase-
experience 1 C 2

3.2 brand-rating 1 B 3

3.2 book-review 1 A 3

4.1
travel-
feedback 1 E 4

4.2 book-review 1 D 3

58 chapter four

The next phase reduces this data further. In this example, there will be
two parallel tasks, one that processes aggregations 1.X, 2.X, and 3.X,
and one that processes aggregation 4.X. It’s important to realize that
each reduce phase only needs to reference the data from the previous
phase and not the original data. The following table shows the results
of this reduce phase.

AggregationID SurveySlug Number of
responses

Histogram
of first
multiple
choice
question

Average of first
range question

1.1 travel-
feedback

3 CCD 4

1.2 book-review 2 AD 3

1.3 product-
wishlist

1 AD 4

1.4 service-
satisfaction

1 E 3

1.5 purchase-
experience

1 C 2

1.6 brand-rating 1 B 3

2.1 travel-
feedback

1 E 4

2.2 book-review 1 D 3

 59building a scalable, multi-tenant application

In the next phase, there is only one task because there are only two
input blocks. The following table shows the results from this reduc-
tion phase.

AggregationID SurveySlug Number of
responses

Histogram
of first
multiple
choice
question

Average of first
range question

1.1 travel-
feedback

4 CCDE 4

1.2 book-
review

3 ADD 3

1.3 product-
wishlist

1 AD 4

1.4 service-
satisfaction

1 E 3

1.5 purchase-
experience

1 C 2

1.6 brand-
rating

1 B 3

At this point, it’s not possible to reduce the data any further, and the
summary statistics for all the survey data that the application read
during the original map phase have been calculated.

It’s now possible to update the summary data based on survey
responses received after the initial map phase ran. You process all new
survey data using MapReduce and then combine the results from the
new data with the old in the final step.

60 chapter four

Scaling the Surveys Application
This section describes how Tailspin designed one functional area of
the Surveys application for scalability. Tailspin anticipates that some
surveys may have thousands, or even hundreds of thousands of re-
spondents, and Tailspin wants to make sure that the public website
remains responsive for all users at all times. At the same time, survey
owners want to be able to view summary statistics calculated from
the survey responses to date.

goals and requirements
In Chapter 3, “Accessing the Surveys Application,” you saw how Tail-
spin uses two websites for the Surveys application: one where sub-
scribers design and administer their surveys, and one where users fill
out their survey responses. The Surveys application currently supports
three question types: free text, numeric range (values from one to
five), and multiple choice. Survey owners must be able to view some
basic summary statistics that the application calculates for each sur-
vey, such as the total number of responses received, histograms of the
multiple-choice results, and aggregations such as averages of the
range results. The Surveys application provides a pre-determined set
of summary statistics that cannot be customized by subscribers. Sub-
scribers who want to perform a more sophisticated analysis of their
survey responses can export the survey data to a SQL Azure instance.

Calculating summary statistics is an expensive operation if there are a
large number of responses to process.

Because of the expected volume of survey response data, Tailspin
anticipates that generating the summary statistics will be an expensive
operation because of the large number of storage transactions that
must occur when the application reads the survey responses. How-
ever, Tailspin does not require the summary statistics to be always up
to date and based on all of the available survey responses. Tailspin is
willing to accept a delay while the application calculates the summary
data if this reduces the cost of generating them.

The public site where respondents fill out surveys must always
have fast response times when users save their responses, and it must
record the responses accurately so that there is no risk of any errors
in the data when a subscriber comes to analyze the results.

The developers at Tailspin also want to be able to run comprehen-
sive unit tests on the components that calculate the summary statis-
tics without any dependencies on Windows Azure storage.

There are also integration
tests that verify the
end-to-end behavior of the
application using Windows
Azure storage.

 61building a scalable, multi-tenant application

the solution
To meet the requirements, the developers at Tailspin decided to use a
worker role to handle the task of generating the summary statistics
from the survey results. Using a worker role enables the application to
perform this resource-intensive process as a background task, ensur-
ing that the web role responsible for collecting survey answers is not
blocked while the application calculates the summary statistics.

Based on the framework for worker roles that the previous
section outlined, this asynchronous task is one that will by triggered
on a schedule, and it must be run as a single instance process because
it updates a single set of results.

The application can use additional tasks in the same worker role
to perform any additional processing on the response data; for ex-
ample, it can generate a list of ordered answers to enable paging
through the response data.

To calculate the survey statistics, Tailspin considered two basic
approaches. The first approach is for the task in the worker role to
retrieve all the survey responses to date at a fixed time interval, recal-
culate the summary statistics, and then save the summary data over
the top of the existing summary data. The second approach is for the
task in the worker role to retrieve all the survey response data that the
application has saved since the last time the task ran, and use this data
to adjust the summary statistics to reflect the new survey results.

The first approach is the simplest to implement, because the
second approach requires a mechanism for tracking which survey re-
sults are new. The second approach also depends on it being possible
to calculate the new summary data from the old summary data and
the new survey results without re-reading all the original survey re-
sults.

Note: You can recalculate all the summary data in the Surveys
application using the second approach. However, suppose you want
one of your pieces of summary data to be a list of the 10 most
popular words used in answering a free-text question. In this case,
you would always have to process all of the survey answers, unless
you also maintained a separate list of all the words used and a
count of how often they appeared. This adds to the complexity of
the second approach.

The key difference between the two approaches is cost. The graph in
Figure 4 shows the result of an analysis that compares the costs of the
two approaches for three different daily volumes of survey answers.
The graph shows the first approach on the upper line with the Recal-
culate label, and the second approach on the lower line with the
Merge label.

You can use a queue to
maintain a list of all new
survey responses. This task
is still triggered on a
schedule that determines
how often the task should
look at the queue for new
survey results to process.

62 chapter four

figure 4
Comparison of costs for alternative approaches to calculating summary
statistics

The graph clearly shows how much cheaper the merge approach is
than the recalculate approach after you get past a certain volume of
transactions. The difference in cost is due almost entirely to the trans-
action costs associated with the two different approaches. Tailspin
decided to implement the merge approach in the Surveys application.

Note: The vertical cost scale on the chart is logarithmic. The
analysis behind this chart makes a number of “worst-case”
assumptions about the way the application processes the survey
results. The chart is intended to illustrate the relative difference
in cost between the two approaches; it is not intended to give
“ hard” figures.

It is possible to optimize the recalculate approach if you decide to
sample the survey answers instead of processing every single one
when you calculate the summary data. You would need to perform
some detailed statistical analysis to determine what proportion of
results you need to select to calculate the summary statistics within
an acceptable margin of error.

In the Surveys application, it would also be possible to generate
the summary statistics by using an approach based on MapReduce.
The advantage of this approach is that it is possible to use multiple
task instances to calculate the summary statistics. However, Tailspin
is willing to accept a delay in calculating the summary statistics, so
performance is not critical for this task. For a description of the
MapReduce programming model, see the section, “MapReduce,”
earlier in this chapter.

$ 10,000,000

$ 1,000,000

$100,000

$10,000

$1,000

$100

$10

$1

Cost of processing survey answers summary (monthly)

Merge new results (queues and blobs)

Recalculate for every new message (only
blobs and scheduler)

$190

$180

$330,000

$1,320,000

$40,000

$10,000

15,000 survey answers/day 5,000,000 survey
answers/day

20,000,000 survey
answers/day

Note: the vertical cost scale is logarithmic

 63building a scalable, multi-tenant application

inside the implementation
Now is a good time to walk through the code that implements the
asynchronous task that calculates the summary statistics in more de-
tail. As you go through this section, you may want to download the
Visual Studio solution for the Tailspin Surveys application from http://
wag.codeplex.com/.

Using a Worker Role to Calculate the Summary Statistics
The team at Tailspin decided to implement the asynchronous back-
ground task that calculates the summary statistics from the survey
results by using a merge approach. Each time the task runs, it pro-
cesses the survey responses that the application has received since the
last time the task ran; it calculates the new summary statistics by
merging the new results with the old statistics.

The worker role in the TailSpin.Workers.Surveys project periodi-
cally scans the queue for pending survey answers to process.

The following code example from the UpdatingSurvey
ResultsSummaryCommand class shows how the worker role pro-
cesses each temporary survey answer and then uses them to recalcu-
late the summary statistics.

private readonly IDictionary<string, SurveyAnswersSummary>
 surveyAnswersSummaryCache;
private readonly ISurveyAnswerStore surveyAnswerStore;
private readonly ISurveyAnswersSummaryStore
 surveyAnswersSummaryStore;

public UpdatingSurveyResultsSummaryCommand(
 IDictionary<string, SurveyAnswersSummary>
 surveyAnswersSummaryCache,
 ISurveyAnswerStore surveyAnswerStore,
 ISurveyAnswersSummaryStore surveyAnswersSummaryStore)
{
 this.surveyAnswersSummaryCache =
 surveyAnswersSummaryCache;
 this.surveyAnswerStore = surveyAnswerStore;
 this.surveyAnswersSummaryStore =
 surveyAnswersSummaryStore;
 }
public void PreRun()
{
 this.surveyAnswersSummaryCache.Clear();
}

public void Run(SurveyAnswerStoredMessage message)

http://wag.codeplex.com/
http://wag.codeplex.com/

64 chapter four

{
 this.surveyAnswerStore.AppendSurveyAnswerIdToAnswersList(
 message.Tenant,
 message.SurveySlugName,
 message.SurveyAnswerBlobId);

 var surveyAnswer =
 this.surveyAnswerStore.GetSurveyAnswer(
 message.Tenant,
 message.SurveySlugName,
 message.SurveyAnswerBlobId);

 var keyInCache = string.Format(CultureInfo.InvariantCulture,
 "{0}_{1}", message.Tenant, message.SurveySlugName);
 SurveyAnswersSummary surveyAnswersSummary;

 if (!this.surveyAnswersSummaryCache.ContainsKey(keyInCache))
 {
 surveyAnswersSummary = new
 SurveyAnswersSummary(message.Tenant,
 message.SurveySlugName);
 this.surveyAnswersSummaryCache[keyInCache] =
 surveyAnswersSummary;
 }
 else
 {
 surveyAnswersSummary =
 this.surveyAnswersSummaryCache[keyInCache];
 }

 surveyAnswersSummary.AddNewAnswer(surveyAnswer);
}

public void PostRun()
{
 foreach (var surveyAnswersSummary in
 this.surveyAnswersSummaryCache.Values)
 {
 var surveyAnswersSummaryInStore =
 this.surveyAnswersSummaryStore
 .GetSurveyAnswersSummary(surveyAnswersSummary.Tenant,
 surveyAnswersSummary.SlugName);

 65building a scalable, multi-tenant application

 surveyAnswersSummary.MergeWith(
 surveyAnswersSummaryInStore);

 this.surveyAnswersSummaryStore
 .SaveSurveyAnswersSummary(surveyAnswersSummary);
 }
}

The Surveys application uses the Unity Application Block (Unity) to
initialize an instance of the UpdatingSurveyResultsSummary
Command class and the surveyAnswerStore and surveyAnswers
SummaryStore variables. The surveyAnswerStore variable is an
instance of the SurveyAnswerStore type that the Run method uses
to read the survey responses from BLOB storage. The survey
AnswersSummaryStore variable is an instance of the Survey
AnswersSummary type that the PostRun method uses to write sum-
mary data to BLOB storage. The surveyAnswersSummaryCache
dictionary holds a SurveyAnswersSummary object for each survey.

Note: Unity is a lightweight, extensible dependency injection
container that supports interception, constructor injection,
property injection, and method call injection. You can use Unity in
a variety of ways to help decouple the components of your applica-
tions, to maximize coherence in components, and to simplify design,
implementation, testing, and administration of these applications.

For more information about Unity and to download the
application block, see the patterns & practices Unity page on
CodePlex (http://unity.codeplex.com/).

The PreRun method runs before the task reads any messages from
the queue and initializes a temporary cache for the new survey re-
sponse data.

The Run method runs once for each new survey response. It uses
the message from the queue to locate the new survey response, and
then it adds the survey response to the SurveyAnswersSummary
object for the appropriate survey by calling the AddNewAnswer
method. The AddNewAnswer method updates the summary
statistics in the surveyAnswersSummaryStore instance. The Run
method also calls the AppendSurveyAnswerIdToAnswersList
method to update the list of survey responses that the application
uses for paging.

http://unity.codeplex.com/

66 chapter four

The PostRun method runs after the task reads all the outstanding
answers in the queue. For each survey, it merges the new results with
the existing summary statistics, and then it saves the new values back
to BLOB storage.
The worker role uses some “plumbing” code developed by Tailspin to
invoke the PreRun, Run, and PostRun methods in the Updating
SurveyResultsSummaryCommand class on a schedule. The following
code example shows how the Surveys application uses the “plumbing”
code in the Run method in the worker role to run the three methods
that comprise the job.

public override void Run()
{
 var updatingSurveyResultsSummaryJob =
 this.container.Resolve
 <UpdatingSurveyResultsSummaryCommand>();
 var surveyAnswerStoredQueue =
 this.container.Resolve
 <IAzureQueue<SurveyAnswerStoredMessage>>();
 BatchProcessingQueueHandler
 .For(surveyAnswerStoredQueue)
 .Every(TimeSpan.FromSeconds(10))
 .Do(updatingSurveyResultsSummaryJob);

 var transferQueue = this.container
 .Resolve<IAzureQueue<SurveyTransferMessage>>();
 var transferCommand = this
 .container.Resolve<TransferSurveysToSqlAzureCommand>();
 QueueHandler
 .For(transferQueue)
 .Every(TimeSpan.FromSeconds(5))
 .Do(transferCommand);

 while (true)
 {
 Thread.Sleep(TimeSpan.FromSeconds(5));
 }
}

 67building a scalable, multi-tenant application

This method first uses Unity to instantiate the UpdatingSurvey
ResultsSummaryCommand object that defines the job and the
AzureQueue object that holds notifications of new survey responses.

The method then passes these objects as parameters to the For
and Do “plumbing” methods. The Every “plumbing” method specifies
how frequently the job should run. These methods cause the plumb-
ing code to invoke the PreRun, Run, and PostRun method in the
UpdatingSurveyResultsSummaryCommand class, passing a message
from the queue to the Run method.

The preceding code example also shows how the worker role
initializes the task defined in the TransferSurveysToSqlAzure
Command class that dumps survey data to SQL Azure. This task is
slightly simpler and only has a Run method.

You should tune the frequency at which these tasks run based on
your expected workloads by changing the value passed to the Every
method.

Finally, the method uses a while loop to keep the worker role
instance alive.

Note: The For, Every, and Do methods implement a fluent API
for instantiating tasks in the worker role. Fluent APIs help to make
the code more legible.

The Worker Role “Plumbing” Code
The “plumbing” code in the worker role enables you to invoke
commands of type IBatchCommand or ICommand by using the Do
method, on a Windows Azure queue of type IAzureQueue by using
the For method, at a specified interval. Figure 5 shows the key types
that make up the “plumbing” code.

68 chapter four

GenericQueueHandler<T>
Generic Abstract Class

Methods

ProcessMessages(IAzureQueue<T> queue, IEnumerable<T> messages, Action<T> action) : void

Sleep(TimeSpan interval) : void

BatchProcessingQueueHandler<T>
Generic Class

GenericQueueHandler<T>

interval : TimeSpan
queue : IAzureQueue<T>

BatchProcessingQueueHandler(IAzureQueue<T>queue)
Cycle(IBatchCommand<T> batchCommand) : void

Do(IBatchCommand<T> batchCommand) : void

Every(TimeSpan intervalBetweenRuns) : Batch ProcessingQueueHandler<T>

For(IAzureQueue<T> queue) : BatchProcessingQueueHandler<T>

ICommand<T>
Generic Interface

Methods

Methods

Run(T message) : void

QueueHandler<T>
Generic Class

GenericQueueHandler<T>

Fields

Fields

Methods

interval : TimeSpan

queue : IAzureQueue<T>

Cycle(ICommand<T> command) : void
Do(ICommand<T> command) : void

Every(TimeSpan intervalBetweenRuns) : QueueHandler<T>
For(IAzureQueue<T> queue) : QueueHandler<T>
QueueHandler(IAzureQueue<T> queue)

IBatchComman...
Generic Interface

ICommand<T>

Methods

PostRun() : void

PreRun() : void
IAzureQueue<T>
Generic Interface

Methods

AddMessage(T message) : void

Clear() : void

DeleteMessage(T message) : void

EnsureExist() : void

GetMessage() : T
GetMessage(int maxMessagesToReturen) : IEnumerable<T>

figure 5
Key “plumbing” types

 69building a scalable, multi-tenant application

Figure 5 shows both a BatchProcessingQueueHandler class and
a QueueHandler class. The QueueHandler class runs tasks that
implement the simpler ICommand interface instead of the IBatch
Command interface. The discussion that follows focuses on the Batch
ProcessingQueueHandlerTask that the application uses to create the
summary statistics.

The worker role first invokes the For method in the static Batch
ProcessingQueueHandler class, which invokes the For method in the
BatchProcessingQueueHandler<T> class to return a Batch
ProcessingQueueHandler<T> instance that contains a reference
to the IAzureQueue<T> instance to monitor. The “plumbing” code
identifies the queue based on a queue message type that derives from
the AzureQueueMessage type. The following code example shows
how the For method in the BatchProcessingQueueHandler<T> class
instantiates a BatchProcessingQueueHandler<T> instance.

private readonly IAzureQueue<T> queue;
private TimeSpan interval;

protected BatchProcessingQueueHandler(IAzureQueue<T> queue)
{
 this.queue = queue;
 this.interval = TimeSpan.FromMilliseconds(200);
}

public static BatchProcessingQueueHandler<T> For(
 IAzureQueue<T> queue)
{
 if (queue == null)
 {
 throw new ArgumentNullException("queue");
 }

 return new BatchProcessingQueueHandler<T>(queue);
}

Next, the worker role invokes the Every method of the
BatchProcessingQueueHandler<T> object to specify how frequent-
ly the task should be run.

The current implementa-
tion uses a single queue,
but you could modify the
BatchProcessingQueue-
Handler to read from
multiple queues instead of
only one. According to the
benchmarks published at
http://azurescope.
cloupapp.net, the maxi-
mum write throughput for
a queue is between 500
and 700 items per second.
If the Surveys application
needs to handle more than
approximately 2 million
survey responses per hour,
the application will hit the
threshold for writing to a
single queue. You could
change the application to
use multiple queues,
perhaps with different
queues for each subscriber.

http://azurescope

70 chapter four

Next, the worker role invokes the Do method of the
BatchProcessingQueueHandler<T> object, passing an IBatch
Command object that identifies the command that the “plumbing”
code should execute on each message in the queue. The following
code example shows how the Do method uses the Task.Factory.
StartNew method from the Task Parallel Library (TPL) to run the
PreRun, ProcessMessages, and PostRun methods on the queue at
the requested interval.

public virtual void Do(IBatchCommand<T> batchCommand)
{
 Task.Factory.StartNew(() =>
 {
 while (true)
 {
 this.Cycle(batchCommand);
 }
 }, TaskCreationOptions.LongRunning);
}

protected void Cycle(IBatchCommand<T> batchCommand)
{
 try
 {
 batchCommand.PreRun();

 bool continueProcessing;
 do
 {
 var messages = this.queue.GetMessages(32);
 ProcessMessages(this.queue, messages,
 batchCommand.Run);

 continueProcessing = messages.Count() > 0;
 }
 while (continueProcessing);

 batchCommand.PostRun();

 this.Sleep(this.interval);
 }
 catch (TimeoutException)
 {
 }
}

Use Task.Factory.
StarNew in preference to
ThreadPool.Queue
UserWorkItem.

 71building a scalable, multi-tenant application

The Cycle method repeatedly pulls up to 32 messages from the queue
in a single transaction for processing until there are no more messages
left.

The following code example shows the ProcessMessages method
in the GenericQueueHandler class.

protected static void ProcessMessages(IAzureQueue<T> queue,
 IEnumerable<T> messages, Action<T> action)
{
 …

 foreach (var message in messages)
 {
 var success = false;

 try
 {
 action(message);
 success = true;
 }
 catch (Exception)
 {
 success = false;
 }
 finally
 {
 if (success || message.DequeueCount > 5)
 {
 queue.DeleteMessage(message);
 }
 }
 }
}

This method uses the action parameter to invoke the custom com-
mand on each message in the queue. Finally, the method checks for
poison messages by looking at the DequeueCount property of the
message; if the application has tried more than five times to process
the message, the method deletes the message.

Note: Instead of deleting poison messages, you should send them
to a dead message queue for analysis and troubleshooting.

72 chapter four

Testing the Worker Role
The implementation of the “plumbing” code in the worker role, and
the use of Unity, makes it possible to run unit tests on the worker role
components using mock objects instead of Windows Azure queues
and BLOBs. The following code from the BatchProcessingQueue
HandlerFixture class shows two example unit tests.

[TestMethod]
public void ForCreatesHandlerForGivenQueue()
{
 var mockQueue = new Mock<IAzureQueue<StubMessage>>();

 var queueHandler = BatchProcessingQueueHandler
 .For(mockQueue.Object);

 Assert.IsInstanceOfType(queueHandler,
 typeof(BatchProcessingQueueHandler<StubMessage>));
}

[TestMethod]
public void DoRunsGivenCommandForEachMessage()
{
 var message1 = new StubMessage();
 var message2 = new StubMessage();
 var mockQueue = new Mock<IAzureQueue<StubMessage>>();
 mockQueue.Setup(q =>
 q.GetMessages(32)).Returns(
 () => new[] { message1, message2 });
 var command = new Mock<IBatchCommand<StubMessage>>();
 var queueHandler =
 new BatchProcessingQueueHandlerStub(mockQueue.Object);

 queueHandler.Do(command.Object);

 command.Verify(c => c.Run(It.IsAny<StubMessage>()),
 Times.Exactly(2));
 command.Verify(c => c.Run(message1));
 command.Verify(c => c.Run(message2));
}

 73building a scalable, multi-tenant application

public class StubMessage : AzureQueueMessage
{
}

private class BatchProcessingQueueHandlerStub :
 BatchProcessingQueueHandler<StubMessage>
{
 public BatchProcessingQueueHandlerStub(
 IAzureQueue<StubMessage> queue) : base(queue)
 {
 }

 public override void Do(
 IBatchCommand<StubMessage> batchCommand)
 {
 this.Cycle(batchCommand);
 }
}

The ForCreateHandlerForGivenQueue unit test verifies that the
static For method instantiates a BatchProcessingQueueHandler
correctly by using a mock queue. The DoRunsGivenCommand
ForEachMessage unit test verifies that the Do method causes the
command to be executed against every message in the queue by using
mock queue and command objects.

References and Resources
For more information about ASP.NET routing, see “ASP.NET Routing”
on MSDN:

http://msdn.microsoft.com/en-us/library/cc668201.aspx

For more information about the URL Rewrite Module for IIS, see
“URL Rewrite” on IIS.net:

http://www.iis.net/download/urlrewrite

For more information about fluent APIs, see the entry for “Fluent
interface” on Wikipedia:

http://en.wikipedia.org/wiki/Fluent_interface

http://msdn.microsoft.com/en-us/library/cc668201.aspx
http://www.iis.net/download/urlrewrite
http://en.wikipedia.org/wiki/Fluent_interface

74 chapter four

For more information about the MapReduce algorithm, see the following:
•	 The entry for “MapReduce” on Wikipedia:

http://en.wikipedia.org/wiki/MapReduce
•	 The article, “Google patents Map/Reduce,” on The H website:

http://www.h-online.com/open/news/item/Google-patents-
Map-Reduce-908602.html

For information about the Task Parallel Library, see “Task Parallel
Library” on MSDN:

http://msdn.microsoft.com/en-us/library/dd460717.aspx

For information about the advantages of using the Task Parallel library
instead of working with the thread pool directly, see the following:
•	 The article, “Optimize Managed Code for Multi-Core

Machines,” in MSDN Magazine:
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx

•	 The blog post, “Choosing Between the Task Parallel Library
and the ThreadPool,” on the Parallel Programming with .NET
blog: http://blogs.msdn.com/b/pfxteam/archive/2009/10/06/
9903475.aspx

http://en.wikipedia.org/wiki/MapReduce
http://www.h-online.com/open/news/item/Google-patents-Map-Reduce-908602.html
http://www.h-online.com/open/news/item/Google-patents-Map-Reduce-908602.html
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx
http://blogs.msdn.com/b/pfxteam/archive/2009/10/06/

75

5 Working with Data in the
Surveys Application

This chapter describes how the Surveys application uses data. It first
describes the data model used by the Surveys application and then
discusses why the team at Tailspin chose this particular approach with
reference to a number of specific scenarios in the application. It also
describes how the developers ensured the testability of their solution.
Finally, it describes how and why the application uses SQL Azure™.

A Data Model for a Multi-Tenant Application
This section describes the data model in the surveys application and
explains how the table design partitions the data by tenant.

The Surveys application uses a mix of table storage and BLOB
storage to store its data. The sections, “Saving Survey Response Data”
and “Paging through Survey Results,” later in this chapter discuss why
the application uses BLOB storage for some data. Figure 1 shows, at
a high level, which data is stored in the different storage types.

The Surveys application uses
BLOB and table storage.

76 chapter five

figure 1
Data storage in the Surveys application

storing survey definitions
The Surveys application stores the definition of surveys in two Win-
dows Azure™ tables. This section describes these tables and explains
why Tailspin adopted this design.

The following table describes the fields in the Surveys table. This
table holds a list of all of the surveys in the application.

Field name Notes

PartitionKey This field contains the tenant name. Tailspin chose this value
because they want to be able to filter quickly by tenant name.

RowKey This field contains the tenant name from the PartitionKey
field concatenated with the “slugified” version of the survey
name. This makes sure that a subscriber cannot create two
surveys with the same name. Two subscribers could choose
the same name for their surveys.

Timestamp Windows Azure table storage automatically maintains the
value in this field.

SlugName The “slugified” version of the survey name.

CreatedOn This field records when the subscriber created the survey.
This will differ from the Timestamp value if the subscriber
edits the survey.

Title The survey name.

tenants (container)

1 blob/tenant

surveyanswers-tenant-survey
(container)

1 container/survey

1 blob/answer

Surveys (table)

1 row/survey

Questions (table)

1 row/question

surveyanswerslists
(container)

1 blob/survey

surveyanswerssummaries
(container)

1 blob/survey

1
*

A slug name is a string
where all whitespace and
invalid characters are
replaced with a hyphen (-).
The term comes from the
newsprint industry and has
nothing to do with those
things in your garden!

 77working with data in the surveys application

The following table describes the fields in the Questions table.
The application uses this table to store the question definitions and
to render a survey.

Field name Notes

PartitionKey This field contains the tenant name from the PartitionKey
field in the Surveys table concatenated with the “slugified”
version of the survey name. This enables the application to
insert all questions for a survey in a single transaction and to
retrieve all the questions in a survey quickly from a single
partition.

RowKey This field contains a formatted tick count concatenated with
position of the question within the survey. This guarantees a
unique RowKey value and defines the ordering of the
questions.

Timestamp Windows Azure table storage automatically maintains the
value in this field.

Text The question text.

Type The question type: Simple text, multiple choice, or five stars (a
numeric range).

Possi-
bleAnswers

This field contains a list of the possible answers if the
question is a multiple-choice question.

To read a more detailed discussion of RowKeys and PartitionKeys in
Windows Azure table storage, see Chapter 5, “Phase 2: Automating
Deployment and Using Windows Azure Storage,” of the book, Win-
dows Azure Architecture Guide, Part 1: Moving Applications to the Cloud,
available at http://msdn.microsoft.com/en-us/library/ff728592.aspx.

storing tenant data
The Surveys application saves tenant data in BLOB storage in a con-
tainer named tenants. The following code shows the Tenant class; the
application serializes Tenant instances to BLOBs identified by the
subscriber’s name (the term “tenant” is used in the storage classes to
refer to subscribers).

[Serializable]
public class Tenant
{
 public string ClaimType { get; set; }

 public string ClaimValue { get; set; }

Remember that Windows
Azure table storage only
supports transactions
within a single partition on
a single table.

http://msdn.microsoft.com/en-us/library/ff728592.aspx

78 chapter five

 public string HostGeoLocation { get; set; }

 public string IssuerThumbPrint { get; set; }

 public string IssuerUrl { get; set; }

 public string Logo { get; set; }

 public string Name { get; set; }

 public string SqlAzureConnectionString { get; set; }

 public string DatabaseName { get; set; }

 public string DatabaseUserName { get; set; }

 public string DatabasePassword { get; set; }

 public string SqlAzureFirewallIpStart { get; set; }

 public string SqlAzureFirewallIpEnd { get; set; }
}

The application collects most of the subscriber data during the on-
boarding process. The Logo property contains the URL for the sub-
scriber’s logo. The application stores logo images in a public BLOB
container named logos.

storing survey answers
The Surveys application saves survey answers in BLOB storage. The
application creates a BLOB container for each survey with a name
that follows this pattern: surveyanswers-<tenant name>-<survey slug
name>. This guarantees a unique container name for every survey.

For each completed survey response, the Surveys application
saves a BLOB into the survey’s container. The BLOB name is a tick
count derived from the current date and time, which ensures that
each BLOB in the container has a unique name. The content of each
BLOB is a SurveyAnswer object serialized in the JavaScript Object
Notation (JSON) format. The following code example shows the
SurveyAnswer and QuestionAnswer classes.

public class SurveyAnswer
{
 …

 public string SlugName { get; set; }

 79working with data in the surveys application

 public string Tenant { get; set; }
 public string Title { get; set; }
 public DateTime CreatedOn { get; set; }
 public List<QuestionAnswer> QuestionAnswers { get; set; }
}

public class QuestionAnswer
{
 public string QuestionText { get; set; }
 public QuestionType QuestionType { get; set; }

 [Required(ErrorMessage = "* You must provide an answer.")]
 public string Answer { get; set; }
 public string PossibleAnswers { get; set; }
}

The Surveys application also uses BLOB storage to store an ordered
list of the responses to each survey. For each survey, the application
stores a BLOB that contains a serialized List object containing the
ordered names of all the survey response BLOBs for that survey. The
List object is serialized in the JSON format. The section, “Paging
Through Survey Results,” later in this chapter explains how the Sur-
veys application uses these List objects to enable paging through the
survey results.

storing survey answer summaries
The Surveys application uses BLOB storage to save the summary sta-
tistical data for each survey. For each survey, it creates a BLOB named
<tenant-name>-<survey slug name> in the surveyanswerssummaries
container. The application serializes a SurveyAnswersSummary ob-
ject in the JSON format to save the data. The following code example
shows the SurveyAnswersSummary and QuestionAnswers
Summary classes that define the summary data.

public class SurveyAnswersSummary
{
 …
 public string Tenant { get; set; }

 public string SlugName { get; set; }

 public int TotalAnswers { get; set; }

 public List<QuestionAnswersSummary> QuestionAnswersSummaries
 { get; set; }
 …

80 chapter five

}

public class QuestionAnswersSummary
{
 public string AnswersSummary { get; set; }

 public QuestionType QuestionType { get; set; }

 public string QuestionText { get; set; }

 public string PossibleAnswers { get; set; }
}

Notice that the summary is stored as a string for all question types,
including numeric. This helps to minimize the number of changes that
would be required to add a new question type to the Surveys applica-
tion.

the store classes
The Surveys application uses store classes to manage storage. This
section briefly outlines the responsibilities of each of these store
classes.

SurveyStore Class
This class is responsible for saving survey definitions to table storage
and retrieving the definitions from table storage.

SurveyAnswerStore Class
This class is responsible for saving survey answers to BLOB storage
and retrieving survey answers from BLOB storage. This class creates a
new container when it saves the first response to a new survey. It uses
a queue to track new survey responses; the application uses this queue
to calculate the summary statistical data for surveys.

This class also provides support for browsing sequentially through
survey responses.

SurveyAnswersSummaryStore Class
This class is responsible for saving summary statistical data for surveys
to BLOBs in the surveyanswerssummaries container, and for retrieving
this data.

 81working with data in the surveys application

SurveySqlStore Class
This class is responsible for saving survey response data to SQL Azure.
For more information, see the section, “Using SQL Azure,” later in this
chapter.

SurveyTransferStore Class
This class is responsible placing a message on a queue when a sub-
scriber requests the application to dump survey data to SQL Azure.

TenantStore Class
This class is responsible for saving and retrieving subscriber data and
saving uploaded logo images. In the sample code, this class generates
some default data for the Adatum and Fabrikam subscribers.

Testing and Windows Azure Storage
This section describes how the design and implementation of the data
store classes in the Surveys application make unit testing and updat-
ing the storage mechanism easier.

goals and requirements
The Surveys application uses Windows Azure table and BLOB stor-
age, and the developers at Tailspin were concerned about how this
would affect their unit testing strategy. From a testing perspective, a
unit test should focus on the behavior of a specific class and not on
the interaction of that class with other components in the applica-
tion. From the perspective of Windows Azure, any test that depends
on Windows Azure storage requires complex setup and tear-down
logic to make sure that the correct data is available for the test to run.
For both of these reasons, the developers at Tailspin designed the data
access functionality in the Surveys application with testability in
mind, and specifically to make it possible to run unit tests on their
data store classes without a dependency on Windows Azure storage.

the solution
The solution adopted by the developers at Tailspin was to wrap the
Windows Azure storage components in such a way as to facilitate
replacing them with mock objects during unit tests and to use the
Unity Application Block (Unity). A unit test should be able to instanti-
ate a suitable mock storage component, use it for the duration of the
test, and then discard it. Any integration tests can continue to use
the original data access components to test the functionality of the
application.

The Surveys application
uses Unity to decouple its
components and facilitate
testing.

82 chapter five

Note: Unity is a lightweight, extensible dependency injection
container that supports interception, constructor injection,
property injection, and method call injection. You can use Unity in
a variety of ways to help decouple the components of your applica-
tions, to maximize coherence in components, and to simplify design,
implementation, testing, and administration of these applications.

You can learn more about Unity and download the application
block at http://unity.codeplex.com/.

inside the implementation
Now is a good time to walk through some code that illustrates testing
the store classes in more detail. As you go through this section, you
may want to download the Microsoft® Visual Studio® development
system solution for the Tailspin Surveys application from http://wag.
codeplex.com/.

This section describes how the design of the Surveys application
supports unit testing of the SurveyStore class that provides access to
the table storage. This description focuses on one specific set of tests,
but the application uses the same approach with other store classes.

The following code example shows the IAzureTable interface
and the AzureTable class that are at the heart of the implementation.

public interface IAzureTable<T> where T : TableServiceEntity
{
 IQueryable<T> Query { get; }
 void EnsureExist();
 void Add(T obj);
 void Add(IEnumerable<T> objs);
 void AddOrUpdate(T obj);
 void AddOrUpdate(IEnumerable<T> objs);
 void Delete(T obj);
 void Delete(IEnumerable<T> objs);
}

public class AzureTable<T>
 : IAzureTable<T> where T : TableServiceEntity
{
 private readonly string tableName;
 private readonly CloudStorageAccount account;

 …

 public IQueryable<T> Query
 {
 get

http://unity.codeplex.com/
http://wag

 83working with data in the surveys application

 {
 TableServiceContext context = this.CreateContext();
 return context.CreateQuery<T>(this.tableName)
 .AsTableServiceQuery();
 }
 }

 public void Add(T obj)
 {
 this.Add(new[] { obj });
 }

 public void Add(IEnumerable<T> objs)
 {
 TableServiceContext context = this.CreateContext();

 foreach (var obj in objs)
 {
 context.AddObject(this.tableName, obj);
 }

 var saveChangesOptions = SaveChangesOptions.None;
 if (objs.Distinct(new PartitionKeyComparer())
 .Count() == 1)
 {
 saveChangesOptions = SaveChangesOptions.Batch;
 }

 context.SaveChanges(saveChangesOptions);
 }

 …

 private TableServiceContext CreateContext()
 {
 return new TableServiceContext(
 this.account.TableEndpoint.ToString(),
 this.account.Credentials);
 }

 private class PartitionKeyComparer :
 IEqualityComparer<TableServiceEntity>
 {
 public bool Equals(TableServiceEntity x,
 TableServiceEntity y)

84 chapter five

 {
 return string.Compare(x.PartitionKey, y.PartitionKey,
 true,
 System.Globalization.CultureInfo
 .InvariantCulture) == 0;
 }

 public int GetHashCode(TableServiceEntity obj)
 {
 return obj.PartitionKey.GetHashCode();
 }
 }
}

Note: The Add method that takes an IEnumerable parameter
should check the number of items in the batch and the size of the
payload before calling the SaveChanges method with the
SaveChangesOptions.Batch option. For more information
about batches and Windows Azure table storage, see the section,
“Transactions in aExpense,” in Chapter 5, “Phase 2: Automating
Deployment and Using Windows Azure Storage,” of the book,
Windows Azure Architecture Guide, Part 1: Moving Applications
to the Cloud, available at http://msdn.microsoft.com/en-us/
library/ff728592.aspx.

The generic interface and class have a type parameter T that derives
from the Windows Azure TableServiceEntity type that you use to
create your own table types. For example, in the Surveys application,
the SurveyRow and QuestionRow types derive from the Table
ServiceEntity class. The interface defines several operations: the
Query method returns an IQueryable collection of the type T, and
the Add, AddOrUpdate, and Delete methods each take a parameter
of type T. In the AzureTable class, the Query method returns a
TableServiceQuery object, the Add and AddOrUpdate methods
save the object to table storage, and the Delete method deletes the
object from table storage. To create a mock object for unit testing,
you must instantiate an object of type IAzureTable.

The following code example from the SurveyStore class shows
the constructor.

public SurveyStore(IAzureTable<SurveyRow> surveyTable,
 IAzureTable<QuestionRow> questionTable)
{
 this.surveyTable = surveyTable;
 this.questionTable = questionTable;
}

http://msdn.microsoft.com/en-us/

 85working with data in the surveys application

The constructor takes parameters of type IAzureTable that enable
you to pass in either real or mock objects that implement the inter-
face.

This parameterized constructor is invoked in two different sce-
narios. The Surveys application invokes the constructor indirectly
when the application uses the SurveysController MVC class. The
application uses the Unity dependency injection framework to instan-
tiate MVC controllers. The Surveys application replaces the standard
MVC controller factory with the UnityControllerFactory class in the
OnStart method in both web roles, so when the application requires
a new MVC controller instance, Unity is responsible for instantiating
that controller. The following code example shows part of the
ContainerBootstrapper class from the TailSpin.Web project that the
Unity container uses to determine how to instantiate objects.

public static class ContainerBootstraper
{
 public static void RegisterTypes(IUnityContainer container)
 {
 var account = CloudConfiguration
 .GetStorageAccount("DataConnectionString");
 container.RegisterInstance(account);

 container.RegisterType<ISurveyStore, SurveyStore>();

 container.RegisterType<IAzureTable<SurveyRow>,
 AzureTable<SurveyRow>>(
 new InjectionConstructor(typeof
 (Microsoft.WindowsAzure.CloudStorageAccount),
 AzureConstants.Tables.Surveys));

 container.RegisterType<IAzureTable<QuestionRow>,
 AzureTable<QuestionRow>>(
 new InjectionConstructor(typeof
 (Microsoft.WindowsAzure.CloudStorageAccount),
 AzureConstants.Tables.Questions));

 …
 }
}

The last two calls to the RegisterType method define the rules that
tell the Unity container how to instantiate the AzureTable instances
that it must pass to the SurveyStore constructor.

86 chapter five

When the application requires a new MVC controller instance,
Unity is responsible for creating the controller, and in the case of the
SurveysController class, Unity instantiates a SurveyStore object us-
ing the parameterized constructor shown earlier, and passes the
SurveyStore object to the SurveysController constructor.

In the second usage scenario for the parameterized SurveyStore
constructor, you create unit tests for the SurveyStore class by
directly invoking the constructor and passing in mock objects. The
following code example shows a unit test method that uses the
constructor in this way.

[TestMethod]
public void GetSurveyByTenantAndSlugNameReturnsTenantNameFrom
PartitionKey()
{
 string expectedRowKey = string.Format(
 CultureInfo.InvariantCulture, "{0}_{1}", "tenant",
 "slug-name");
 var surveyRow = new SurveyRow { RowKey = expectedRowKey,
 PartitionKey = "tenant" };
 var surveyRowsForTheQuery = new[] { surveyRow };
 var mock = new Mock<IAzureTable<SurveyRow>>();
 mock.SetupGet(t => t.Query)
 .Returns(surveyRowsForTheQuery.AsQueryable());
 var store = new SurveyStore(mock.Object,
 default(IAzureTable<QuestionRow>));

 var survey = store.GetSurveyByTenantAndSlugName("tenant",
 "slug-name", false);

 Assert.AreEqual("tenant", survey.Tenant);
}

The test creates a mock IAzureTable<SurveyRow> instance, uses it
to instantiate a SurveyStore object, invokes the GetSurveyByTen-
antAndSlugName method, and checks the result. It performs this
test without touching Windows Azure table storage.

The Surveys application uses a similar approach to enable unit
testing of the other store components that use Windows Azure BLOB
and table storage.

 87working with data in the surveys application

Saving Survey Response Data
When a user completes a survey, the application must save the user’s
answers to the survey questions to storage where the survey creator
can access and analyze the results.

goals and requirements
The format that application uses to save the summary response data
must enable the Surveys application to meet the following three re-
quirements:
•	 The owner of the survey must be able to browse the results.
•	 The application must be able to calculate summary statistics

from the answers.
•	 The owner of the survey must be able to export the answers in

a format that enables detailed analysis of the results.
Tailspin expects to see a very large number of users completing sur-
veys; therefore, the process that initially saves the data should be as
efficient as possible. The application can handle any processing of the
data after it has been saved by using an asynchronous worker process.
For information about the design of this background processing func-
tionality in the Surveys application, see the section, “Scaling the Sur-
veys Application,” in Chapter 4, “Building a Scalable, Multi-Tenant
Application for Windows Azure,” earlier in this book.

The focus here is on the way the Surveys application stores the
survey answers. Whatever type of storage the Surveys application
uses, it must be able to support the three requirements listed earlier.
Storage costs are also a significant factor in the choice of storage type
because survey answers account for the majority of the application’s
storage requirements; both in terms of space used and by the number
of storage transactions.

the solution
To meet the requirements, the developers at Tailspin analyzed two
possible storage solutions: a delayed write pattern using queues and
table storage, and a solution that saves directly to BLOB storage. In
both cases, the application first saves the survey responses to storage,
and then it uses an asynchronous task in a worker role to calculate and
save the summary statistics.

Transaction costs will
be significant because
calculating summary
statistical data and
exporting survey results
will require the application
to read survey responses
from storage.

The Surveys application saves
each survey response as a
BLOB.

88 chapter five

Solution 1: The Delayed Write Pattern
Figure 2 shows the delayed write pattern that the Surveys application
could use to save the results of a filled out survey to Windows Azure
table storage.

figure 2
Delayed write pattern for saving survey responses in the Surveys application

In this scenario, a user browses to a survey, fills it out, and then sub-
mits his or her answers back to the Surveys website. The Surveys
website puts the survey answers into a message on a queue and re-
turns a “Thank you” message to the user as quickly as possible, mini-
mizing the value of Tp in Figure 2. A task in a worker role is then re-
sponsible for reading the survey answers from the queue and saving
them to table storage. This operation must be idempotent, to avoid
any possibility of double counting and skewing the results.

Note: You could use separate worker roles, one to calculate and
save the summary statistics, and one to save the survey results to
table storage if you need to scale the application.

There is an 8-kilobyte (KB) maximum size for a message on a Win-
dows Azure queue, so this approach works only if the size of each
survey response is less than that maximum. Figure 3 shows how you
could modify this solution to handle survey results that are greater
than 8 KB in size.

Tp

Browser

Complete
Answers

Get Survey

Survey
website Worker Storage

Get
Store

Update

Post

Thank You !!

Queue

Statistics

Surveys is a “geo-aware”
application. For example,
the Surveys website and
queue could be hosted in a
data center in the U.S., and
the worker role and table
storage could be hosted in
a data center in Europe.

 89working with data in the surveys application

figure 3
Handling survey results greater than 8 KB in size

Figure 3 includes an optimization, whereby the application places
messages that are smaller than 8 KB directly onto a queue, as in the
previous example. For messages that are larger than 8 KB in size, the
application saves them to Windows Azure BLOB storage and places a
message on the “Big Surveys” queue to notify the worker role. The
worker role now contains two tasks: Task 1 retrieves and processes
small surveys from the “Small Surveys” queue; Task 2 polls the “Big
Surveys” queue for notifications of large surveys that it retrieves and
processes from BLOB storage.

Solution 2: Writing Directly to BLOB Storage
As you saw in the previous section, the delayed write pattern becomes
more complex if the size of a survey answer can be greater than 8 KB.
In this case, it is necessary to save the response as a BLOB and notify
the worker role of the new response data by using a message on a
queue. The developers at Tailspin also analyzed a simpler approach
to saving and processing query responses using only BLOB storage.
Figure 4 illustrates this alternative approach.

Browser Survey
website

Tp

Complete
Answers

Get Survey

Post

Thank You !!

Size < 8kb[]

Small
Surveys

Big
Surveys

Big
Responses

Blob

Worker

Task 1 Task 2

Get Survey

Get Survey

[]Size > 8 kb"New Survey"

"Survey"

Get Survey ID

When you calculate the
size of messages, you must
consider the effect of any
encoding, such as Base64,
that you use to encode the
data before you place it in
a message.

90 chapter five

figure 4
Saving survey responses directly to BLOB storage

As you can see from the sequence diagram in Figure 4, the first stages
of the saving survey response process are the same as for the delayed
write pattern. In this approach, there is no queue and no table storage,
and the application stores the survey results directly in BLOB storage.
The worker role now generates the summary statistical data directly
from the survey responses in BLOB storage.

Figure 5 illustrates a variation on this scenario where the sub-
scriber has chosen to host a survey in a different data center from his
or her account.

Browser

Tp

Complete
Answers

Get Survey

Post

Thank You !!

Survey
website Blob Worker

Get

Statistics

Update

 91working with data in the surveys application

figure 5
Saving the responses from a survey hosted in a different data center

In this scenario, there is an additional worker role. This worker role is
responsible for moving the survey response data from the data center
where the subscriber chose to host the survey to the data center host-
ing the subscriber’s account. This way, the application transfers the
survey data between data centers only once, instead of every time the
application needs to read it; this minimizes the costs associated with
this scenario.

Comparing the Solutions
The second solution is much simpler than the first. However, you also
need to check whether keeping the survey responses in BLOBs in-
stead of tables adds complexity to any of the processes that use the
survey results. In the Surveys application, using BLOBs does not add
significantly to the complexity of generating summary statistics, en-
abling the survey owner to browse the responses, or exporting the
data to SQL Azure.

Although the second solution does not limit the functionality
that the Surveys application requires, this design may be limiting in
other applications. Using the delayed write pattern means that you
can easily perform operations on the data before it’s saved to a table,
so in scenarios where the raw data requires some processing to make
it usable, the first solution may be more appropriate. Secondly, storing
data in tables makes it much easier to access the data with dynami-
cally constructed queries.

Browser

Tp

Complete
Answers

Get Survey

Post

Thank You !!

Survey
website Blob Worker

Get

Statistics

Update

Get Save

Blob Worker

U.S. data center European data center

The application reads
survey response data when
it calculates the statistics,
when a user browses
through the responses,
and when it exports the
data to SQL Azure.

The delayed write pattern
enables you to transform the
data before saving it without
affecting the performance of
the web role.

92 chapter five

The third difference between the solutions is the storage costs.
The following table summarizes this difference, showing the number
of storage transactions that the application must perform in order to
save a single survey response.

Solution 1
The delayed write pattern

Solution 2
Writing directly to BLOB storage

1 save to BLOB
1 add message to queue
1 get message from queue
1 read BLOB
1 save to table

1 save to BLOB

Total 5 storage transactions Total 1 storage transactions

inside the implementation
Now is a good time to walk through the code that saves the survey
responses in more detail. As you go through this section, you may
want to download the Visual Studio solution for the Tailspin Surveys
application from http://wag.codeplex.com/.

Saving the Survey Response Data to a Temporary Blob
The following code from the SurveysController class in the TailSpin.
Web.Survey.Public project shows how the application initiates saving
the survey response asynchronously.

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Display(string tenant, string surveySlug,
SurveyAnswer contentModel)
{
 var surveyAnswer = CallGetSurveyAndCreateSurveyAnswer(
 this.surveyStore, tenant, surveySlug);

 …

 for (int i = 0; i < surveyAnswer.QuestionAnswers.Count; i++)
 {
 surveyAnswer.QuestionAnswers[i].Answer =
 contentModel.QuestionAnswers[i].Answer;
 }

 if (!this.ModelState.IsValid)

You should also verify that
the second solution does
not add to the number of
storage transactions that
your application needs to
perform when it processes
or uses the saved data.

http://wag.codeplex.com/

 93working with data in the surveys application

 {
 var model =
 new TenantPageViewData<SurveyAnswer>(surveyAnswer);
 model.Title = surveyAnswer.Title;
 return this.View(model);
 }

 this.surveyAnswerStore.SaveSurveyAnswer(surveyAnswer);

 return this.RedirectToAction("ThankYou");
}

The surveyAnswerStore variable holds a reference to an instance of
the SurveyAnswerStore type. The application uses Unity to initialize
this instance with the correct IAzureBlob and IAzureQueue in-
stances. The BLOB container stores the answers to the survey ques-
tions, and the queue maintains a list of new survey answers that
haven’t been included in the summary statistics or the list of survey
answers.

The SaveSurveyAnswer method writes the survey response data
to the BLOB storage and puts a message onto the queue. The action
method then immediately returns a “Thank you” message.

The following code example shows the SaveSurveyAnswer
method in the SurveyAnswerStore class.

public void SaveSurveyAnswer(SurveyAnswer surveyAnswer)
{
 var surveyBlobContainer = this.surveyAnswerContainerFactory
 .Create(surveyAnswer.Tenant, surveyAnswer.SlugName);
 surveyBlobContainer.EnsureExist();
 DateTime now = DateTime.UtcNow;
 surveyAnswer.CreatedOn = now;
 var blobId = now.GetFormatedTicks();
 surveyBlobContainer.Save(blobId, surveyAnswer);
 this.surveyAnswerStoredQueue.AddMessage(
 new SurveyAnswerStoredMessage
 {
 SurveyAnswerBlobId = blobId,
 Tenant = surveyAnswer.Tenant,
 SurveySlugName = surveyAnswer.SlugName
 });
}

Make sure that the storage
connection strings in your
deployment point to
storage in the deployment’s
geographical location. The
application should use local
queues and BLOB storage
to minimize latency.

94 chapter five

This method first checks that the BLOB container exists and creates
it if necessary. It then creates a unique BLOB ID by using a tick count
and saves the BLOB to the survey container. Finally, it adds a message
to the queue. The application uses the queue to track new survey
responses that must be included in the summary statistics and list of
responses for paging through answers.

Note: It is possible, but very unlikely, that the application could try
to save two BLOBs with the same ID if two users completed a
survey at exactly the same time. The code should check for this
possibility and, if necessary, retry the save with a new tick count
value.

Displaying Data
This section describes several interesting scenarios in the Surveys ap-
plication where the application displays data to users and how the
underlying data model supports this functionality.

paging through survey results
The owner of a survey must be able to browse through the survey
results, displaying a single survey response at a time. This feature is in
addition to being able to view summary statistical data, or being able
to analyze the results using SQL Azure. The Surveys application con-
tains a Browse Responses page for this function.

Goals and Requirements
The design of this feature of the application must address two spe-
cific requirements. The first requirement is that the application must
display the survey responses in the order that they were originally
submitted. The second requirement is to ensure that this feature does
not adversely affect the performance of the web role.

The Solution
The developers at Tailspin considered two solutions, each based on a
different storage model. The first option assumed that the application
stored the survey response data in table storage. The second option,
which was the one chosen, assumed that the application stored the
survey response data in BLOB storage.

Paging with Table Storage
The developers at Tailspin looked at two features of the Windows
Azure table storage API to help them design this solution. The first
feature is the continuation token that you can request from a query

It’s possible that the role
could fail after it adds the
survey data to BLOB
storage but before it adds
the message to the queue.
In this case, the response
data would not be included
in the summary statistics or
the list of responses used
for paging. However, the
response would be
included if the user
exported the survey to
SQL Azure.

 95working with data in the surveys application

that enables you to execute a subsequent query that starts where the
previous query finished. You can use a stack data structure to main-
tain a list of continuation tokens that you can use to go forward one
page or back one page through the survey responses. You must then
keep this stack of continuation tokens in the user’s session state to
enable navigation for the user.

Note: For an example of this approach, see the section, “Imple-
menting Paging with Windows Azure Table Storage” in Chapter 8,
“Phase 4: Adding More Tasks and Tuning the Application,” of the
book, Windows Azure Architecture Guide, Part 1: Moving
Applications to the Cloud, available at http://msdn.microsoft.com/
en-us/library/ff728592.aspx.

The second useful API feature is the ability to run asynchronous que-
ries against Windows Azure table storage. This can help avoid thread
starvation in the web server’s thread pool in the web role by offload-
ing time-consuming tasks to a background thread.

Paging with Blob Storage
The assumption behind this solution is that each survey answer is
stored in a separate BLOB. To access the BLOBs in a predefined order,
you must maintain a list of all the BLOBs. You can then use this list to
determine the identity of the previous and next BLOBs in the se-
quence and enable the user to navigate backward and forward through
the survey responses.

To support alternative orderings of the data, you must maintain
additional lists.

Comparing the Solutions
The previous section, which discusses alternative approaches to sav-
ing survey response data, identified lower transaction costs as the key
advantage of saving directly to BLOB storage instead of using a de-
layed write pattern to save to table storage. Paging with table storage
is complex because you must manage the continuation stack in the
user’s session state.

However, you must consider the costs and complexity associated
with maintaining the ordered list of BLOBs in the second of the two
alternative solutions. This incurs two additional storage transactions
for every new survey; one as the list it retrieved from BLOB storage,
and one as it is saved back to BLOB storage. This is still fewer transac-
tions per survey response than the table-based solution. Furthermore,
it’s possible to avoid using any session state by embedding the links to
the next and previous BLOBs directly in the web page.

The obvious solution
(in this case to use table
storage) is not always
the best solution.

http://msdn.microsoft.com/

96 chapter five

Inside the Implementation
Now is a good time to walk through the data paging functionality that
Tailspin implemented in more detail. As you go through this section,
you may want to download the Visual Studio solution for the Tailspin
Surveys application from http://wag.codeplex.com/.

This walkthrough is divided into two sections. The first section
describes how the application maintains an ordered list of BLOBs. The
second section describes how the application uses this list to page
through the responses.

Maintaining the Ordered List of Survey Responses
The surveys application already uses an asynchronous task in a work-
er role to calculate the summary statistical data for each survey. This
task periodically process new survey answers from a queue, and as it
processes each answer, it updates the ordered list of BLOBs contain-
ing survey results. The application assigns each BLOB an ID that is
based on the tick count when it is saved, and the application adds a
message to a queue to track new survey responses.

The following code example from the SurveyAnswerStore class
shows how the application creates a BLOB ID, saves the BLOB to the
correct BLOB container for the survey, and adds a message to the
queue that tracks new survey responses.

public void SaveSurveyAnswer(SurveyAnswer surveyAnswer)
{
 var surveyBlobContainer = this.surveyAnswerContainerFactory
 .Create(surveyAnswer.Tenant, surveyAnswer.SlugName);
 surveyBlobContainer.EnsureExist();
 DateTime now = DateTime.UtcNow;
 surveyAnswer.CreatedOn = now;
 var blobId = now.GetFormatedTicks();
 surveyBlobContainer.Save(blobId, surveyAnswer);
 this.surveyAnswerStoredQueue.AddMessage(
 new SurveyAnswerStoredMessage
 {
 SurveyAnswerBlobId = blobId,
 Tenant = surveyAnswer.Tenant,
 SurveySlugName = surveyAnswer.SlugName
 });
}

The Run method in the UpdatingSurveyResultsSummaryCommand
class in the worker role calls the AppendSurveyAnswerIdToAnswer
List method for each survey response in the queue of new survey
responses.

Surveys uses an asynchronous
task in a worker role to
maintain the ordered list
of BLOBs.

http://wag.codeplex.com/

 97working with data in the surveys application

The following code example shows how the AppendSurvey
AnswerIdToAnswerList method in the SurveyAnswerStore class.

public void AppendSurveyAnswerIdToAnswersList(string tenant,
 string slugName, string surveyAnswerId)
{
 string id = string.Format(CultureInfo.InvariantCulture,
 "{0}-{1}", tenant, slugName);
 var answerIdList = this.surveyAnswerIdsListContainer.Get(id)
 ?? new List<string>(1);
 answerIdList.Add(surveyAnswerId);
 this.surveyAnswerIdsListContainer.Save(id, answerIdList);
}

The application stores list of survey responses in a List object, which
it serializes in the JSON format and stores in a BLOB. There is one
BLOB for every survey.

Implementing the Paging
When the Surveys application displays a survey response, it finds the
BLOB that contains the survey response by using a BLOB ID. It can use
the ordered list of BLOB IDs to create navigation links to the next and
previous survey responses.

The following code example shows the BrowseResponses action
method in the SurveysController class in the TailSpin.Web project.

public ActionResult BrowseResponses(string tenant,
 string surveySlug, string answerId)
{
 SurveyAnswer surveyAnswer = null;
 if (string.IsNullOrEmpty(answerId))
 {
 answerId = this.surveyAnswerStore
 .GetFirstSurveyAnswerId(tenant, surveySlug);
 }

 if (!string.IsNullOrEmpty(answerId))
 {
 surveyAnswer = this.surveyAnswerStore
 .GetSurveyAnswer(tenant, surveySlug, answerId);
 }

 var surveyAnswerBrowsingContext = this.surveyAnswerStore
 .GetSurveyAnswerBrowsingContext(tenant,
 surveySlug, answerId);

The application adds new
responses to the queue in
the order that they are
received. When it retrieves
messages from the queue
and adds the BLOB IDs to
the list, it preserves the
original ordering.

98 chapter five

 var browseResponsesModel = new BrowseResponseModel
 {
 SurveyAnswer = surveyAnswer,
 PreviousAnswerId =
 surveyAnswerBrowsingContext.PreviousId,
 NextAnswerId = surveyAnswerBrowsingContext.NextId
 };

 var model = new TenantPageViewData<BrowseResponseModel>
 (browseResponsesModel);
 model.Title = surveySlug;
 return this.View(model);
}

This action method uses the GetSurveyAnswer method in Survey
AnswerStore class to retrieve the survey response from BLOB storage
and the GetSurveyAnswerBrowsingContext method to retrieve a
SurveyBrowsingContext object that contains the BLOB IDs of the
next and previous BLOBs in the sequence. It then populates a model
object with this data to forward on to the view.

session data storage
The Surveys application must maintain some state data for each user
as they design a survey. This section describes the design and imple-
mentation of user state management in the Surveys application.

Goals and Requirements
When a user designs a new survey in the Surveys application, they
create the survey and then add questions one-by-one to the survey
until it’s complete. Figure 6 shows the sequence of screens when a
user creates a survey with two questions.

The Surveys application must
maintain session state while a
user designs a survey.

 99working with data in the surveys application

figure 6
Creating a survey with two questions

As you can see in the diagram, this scenario involves two different
screens that require the application to maintain state as the user adds
questions to the survey. The developers at Tailspin considered three
options for managing the session state:
•	 Use JavaScript and manage the complete workflow on the

client. Then use Ajax calls to send the survey to the server after
it’s complete.

•	 Use the standard, built-in Request.Session object to store the
intermediate state of the survey while the user is creating it.
Because the Tailspin web role will run on several node instances,
Tailspin cannot use the default, in-memory session state pro-
vider, and would have to use another storage provider such as
the TableStorageSessionStateProvider from the Windows
Azure samples.

•	 Use an approach similar to ViewState that serializes and deseri-
alizes the workflow state and passes it between the two pages.

Create a new survey

Title:

Create a new survey

Title:

Feedback...

Add a new question

Question: How...?

Add a new question

Question: Where...?Feedback...

Add Question

Add Question

Create

Create

Create a new survey

Title: Feedback...

Add Question

Create

How...?

How...?
Where...?

Add to Survey

Add to Survey

100 chapter five

Note: You can download the Windows Azure samples that include
the TableStorageSessionStateProvider from http://code.msdn.
microsoft.com/windowsazuresamples.

The Solution
You can compare the three options using several different criteria.
Which criteria are most significant will depend on the specific require-
ments of your application.

Simplicity
Something that is simple to implement is also usually easy to maintain.
The first option is the most complex of the three, requiring JavaScript
skills and good knowledge of an Ajax library. It is also difficult to
unit test. The second option is the easiest to implement because it
uses the standard ASP.NET Session object. Using the session state
provider is simply a matter of “plugging-in” the TableStorageSession
StateProvider in the Web.config file. However, after the Table
StorageSessionStateProvider finishes using the state data, it does
not automatically clean it up, so you would have to implement this
functionality. The third option is moderately complex, but you can
simplify the implementation by using some of the features in the ASP.
NET MVC 2 Futures package. Unlike the second option, it doesn’t
require any server side setup or configuration other than including the
MVC Futures code in the solution.

Note: You can download the ASP.NET MVC 2 Futures code from
http://aspnet.codeplex.com/releases/view/41742.

Cost
The first option has the lowest costs because it uses a single POST
message to send the completed survey to the server. The second op-
tion has moderate costs that arise from the table storage transaction
costs incurred whenever the application writes session state to or
reads session state from table storage. The amount of storage required
is not likely to be significant. Tailspin could estimate these costs based
on the expected number questions created per day and the average
size of the questions. The third option has higher costs than the sec-
ond option because its costs arise from bandwidth usage. Again,
Tailspin can estimate the costs based on the expected number of
questions created per day and the average size of the questions.

With both the second and
third options, the data is
encoded as Base64, so any
estimate of the average
question size must consider
this.

http://code.msdn
http://aspnet.codeplex.com/releases/view/41742

 101working with data in the surveys application

Performance
The first option offers the best performance because the client
performs almost all the work with no roundtrips to the server until
the final POST message containing the complete survey. The second
option will introduce some latency into the application; the amount
of latency will depend on the number of concurrent sessions, the
amount of data in the session objects, and the latency between the
web role and Windows Azure table storage. The third option will also
introduce some latency because each question will require a round-
trip to the server and each HTTP request and response message will
include all the current state data.

Scalability
All three options scale well. The first option scales well because it
doesn’t require any session state data outside the browser, the second
and third options scale well because they are “web-farm friendly”
solutions that you can deploy on multiple web roles.

Robustness
The first option is the least robust, relying on “fragile” JavaScript code.
The second option uses sample code that is not production quality,
although you could enhance it. The third option is the most robust,
using easily testable server-side code.

User Experience
The first option provides the best user experience because there are
no postbacks during the survey creation process. The other two op-
tions require a postback for each question.

Security
The first two options offer good security. With the first option, the
browser holds all the survey in memory until the survey creation is
complete, and with the second option, the browser just holds a
cookie with a session ID, while Windows Azure table storage holds
the survey data. The third option is not so secure because it simply
serializes the data to Base64 without encrypting it. It’s possible that
sensitive data could “leak” during the flow between pages.

Tailspin decided to use the third option that passes the survey
design data between the two pages as a serialized object. Instead of
using cookies, the application stores the data in a hidden field in the
form on the pages involved.

102 chapter five

Inside the Implementation
Now is a good time to walk through the session data storage imple-
mentation that Tailspin selected in more detail. As you go through this
section, you may want to download the Visual Studio solution for the
Tailspin Surveys application from http://wag.codeplex.com/.

The following code example shows how the Action methods in
the SurveysController controller class in the TailSpin.Web project
deserialize the data sent from the browser. Notice how the hidden
Survey parameter has the Deserialize attribute from the ASP.NET
MVC 2 Futures package applied.

[HttpGet]
public ActionResult New([Deserialize]Survey hiddenSurvey)
{
 if (hiddenSurvey == null)
 {
 hiddenSurvey = (Survey)this.TempData["hiddenSurvey"];
 }

 if (hiddenSurvey == null)
 {
 hiddenSurvey = new Survey(); // First time to the page
 }

 var model = new TenantPageViewData(hiddenSurvey);
 model.Title = "New Survey";
 return this.View(model);
}

[HttpPost]
public ActionResult New(Survey contentModel, [Deserialize]Survey
hiddenSurvey)
{
 contentModel.Questions = hiddenSurvey.Questions;

 if (!this.ModelState.IsValid)
 {
 var model = new TenantPageViewData<Survey>(contentModel);
 model.Title = "New Survey";
 return this.View(model);
 }

http://wag.codeplex.com/

 103working with data in the surveys application

 contentModel.Tenant = this.TenantName;
 try
 {
 this.surveyStore.SaveSurvey(contentModel);
 }
 catch (DataServiceRequestException ex)
 {
 …
 }

 return this.RedirectToAction("Index");
}

The following code example from the NewQuestion.aspx view shows
how the application causes the form data from the client to be serial-
ized by using the Html.Serialize element.

<% using (Html.BeginForm(“AddQuestion”, “Surveys”)) {%>
 <%: Html.ValidationSummary(true) %>
 <%: Html.Serialize("hiddenSurvey")%>
 <%: Html.Hidden("referrer", "addQuestion") %>

 <dl>
 <dt>
 <%: Html.LabelFor(model => model.ContentModel.Text) %>
 </dt>
 <dd>
 <%: Html.TextBoxFor(model => model.ContentModel.Text,
 new { size = "60" })%>
 …

<% } %>

displaying questions
The application stores the definition of a survey and its questions in
table storage. To render the questions in a page in the browser, the
application uses the MVC EditorExtensions class.

When the Display action method in the SurveysController class
in the TailSpin.Web.Survey.Public project builds the view to display
the survey, it retrieves the survey definition from storage, populates a
model, and passes the model to the view. The following code example
shows this action method.

Tailspin chose this
mechanism to render the
questions because it makes
it easier to include
additional question types
at a later date.

104 chapter five

[HttpGet]
public ActionResult Display(string tenant, string surveySlug)
{
 var surveyAnswer = CallGetSurveyAndCreateSurveyAnswer(
 this.surveyStore, tenant, surveySlug);

 var model =
 new TenantPageViewData<SurveyAnswer>(surveyAnswer);
 model.Title = surveyAnswer.Title;
 return this.View(model);
}

The view uses the EditorExtensions class to render the questions.
The following code example shows how the Display.aspx page uses
the Html.EditorFor element that is defined in the System.Web.Mvc.
EditorExtensions class.

<% for (int i = 0;
 i < this.Model.ContentModel.QuestionAnswers.Count; i++) { %>
 …
 <%: Html.EditorFor(m=>m.ContentModel.QuestionAnswers[i],
 QuestionTemplateFactory.Create(
 Model.ContentModel.QuestionAnswers[i].QuestionType)) %>
 …
<% } %>

This element iterates over all the questions that the controller re-
trieved from storage and uses the QuestionTemplateFactory utility
class to determine which user control (.ascx files) to use to render the
question. The user controls FiveStar.ascx, MultipleChoice.ascx, and
SimpleText.ascx are in the EditorTemplates folder in the project.

displaying the summary statistics
The asynchronous task (described in Chapter 4, “Building a Scalable,
Multi-Tenant Application for Windows Azure”) that generates the
summary statistics from surveys stores the summaries in BLOB stor-
age, using a separate BLOB for each survey. The Surveys application
displays these summary statistics in the same way that it displays
questions. The following code example shows the Analyze action
method in the SurveysController class in the TailSpin.Web project
that reads the results from BLOB storage and populates a model.

public ActionResult Analyze(string tenant, string surveySlug)
{
 var surveyAnswersSummary =
 this.surveyAnswersSummaryStore

 105working with data in the surveys application

 .GetSurveyAnswersSummary(tenant, surveySlug);

 var model =
 this.CreateTenantPageViewData(surveyAnswersSummary);
 model.Title = surveySlug;
 return this.View(model);
}

The view again uses the Html.EditorFor element to render the ques-
tions. The following code example shows a part of the Analyze.aspx
file.

<% for (int i = 0;
 i < this.Model.ContentModel.QuestionAnswersSummaries.Count;
 i++) { %>

 <%: Html.DisplayFor(m => m.ContentModel
 .QuestionAnswersSummaries[i],
 "Summary-" + TailSpin.Web.Survey.Public.Utility
 .QuestionTemplateFactory.Create
 (Model.ContentModel.QuestionAnswersSummaries[i]
 .QuestionType))%>

<% } %>

The user control templates for rendering the summary statistics are
named Summary-FiveStar.ascx, which displays an average for numeric
range questions; Summary-MultipleChoice.ascx, which displays a
histogram; and Summary-SimpleText.ascx, which displays a word
cloud. You can find these templates in the DisplayTemplates folder in
the TailSpin.Web project. To support additional question types, you
must add additional user control templates to this folder.

Using SQL Azure
The Surveys application uses Windows Azure storage to store survey
definitions and survey responses. Tailspin chose to use Windows
Azure storage because of its lower costs and because those costs
depend on the amount of usage, both in terms of capacity used and
the number of storage transactions per month. However, to control
the costs associated with storage, the Surveys application does not
offer a great deal of flexibility in the way that subscribers can analyze
the survey responses. A subscriber can browse through the responses
to a survey in the order that users submitted their responses, and a
subscriber can view a set of “pre-canned” summary statistical data for
each survey.

106 chapter five

To extend the analysis capabilities of the Surveys application,
Tailspin allows subscribers to dump their survey responses into a SQL
Azure database. They can then perform whatever detailed statistical
analysis they want, or they can use this as a mechanism to download
their survey results to an on-premise application by exporting the data
from SQL Azure.

This feature is included in the monthly fee for a Premium sub-
scription. Subscribers at other levels can purchase this feature as an
add-on to their existing subscription.

goals and requirements
The application must be able to export all survey data to SQL Azure,
including the question definitions in addition to the survey responses.

Subscribers who choose to use this feature have their own,
private instance of SQL Azure to ensure that they are free to analyze
and process the data in any way that they see fit. For example, they
may choose to create new tables of summary data or design complex
data-analysis queries. A private instance of SQL Azure also helps to
ensure that their data remains confidential.

the solution
During the on-boarding process, the application will provision a new
SQL Azure instance for those subscribers who have access to this
feature. The provisioning process will create the necessary tables in
the database. As part of the on-boarding process, the Surveys applica-
tion saves the information that the application and the subscriber
require to access the SQL Azure instance in BLOB storage as part of
the subscriber’s details.

A task in a worker role monitors a queue for messages that in-
struct it to dump a subscriber’s survey results to tables in SQL Azure.
Figure 7 shows the table structure in SQL Azure.

SQL Azure allows subscribers
to perform complex analysis
on their survey results.

Giving each subscriber a
separate instance of SQL
Azure enables them to
customize the data, and it
simplifies the security
model.

 107working with data in the surveys application

figure 7
Surveys table structure in SQL Azure

inside the implementation
Now is a good time to walk through the code that dumps the survey
responses to SQL Azure in more detail. As you go through this sec-
tion, you may want to download the Visual Studio solution for the
Tailspin Surveys application from http://wag.codeplex.com/.

The following code example shows the task in the worker role
that executes when it is triggered by a message in a queue. The Run
method is in the TransferSurveysToSqlAzureCommand class.

public void Run(SurveyTransferMessage message)
{
 Tenant tenant =
 this.tenantStore.GetTenant(message.Tenant);
 this.surveySqlStore.Reset(
 tenant.SqlAzureConnectionString, message.Tenant,
 message.SlugName);

 Survey surveyWithQuestions = this.surveyRespository
 .GetSurveyByTenantAndSlugName(message.Tenant,
 message.SlugName, true);

http://wag.codeplex.com/

108 chapter five

 IEnumerable<string> answerIds = this.surveyAnswerStore
 .GetSurveyAnswerIds(message.Tenant,
 surveyWithQuestions.SlugName);

 SurveyData surveyData = surveyWithQuestions.ToDataModel();

 foreach (var answerId in answerIds)
 {
 SurveyAnswer surveyAnswer = this.surveyAnswerStore
 .GetSurveyAnswer(surveyWithQuestions.Tenant,
 surveyWithQuestions.SlugName, answerId);

 var responseData = new ResponseData
 {
 Id = Guid.NewGuid().ToString(),
 CreatedOn = surveyAnswer.CreatedOn
 };

 foreach (var answer in surveyAnswer.QuestionAnswers)
 {
 var questionResponseData = new QuestionResponseData
 {
 QuestionId = (from question in
 surveyData.QuestionDatas
 where question.QuestionText ==
 answer.QuestionText
 select question.Id).FirstOrDefault(),
 Answer = answer.Answer
 };

 responseData.QuestionResponseDatas
 .Add(questionResponseData);
 }
 if (responseData.QuestionResponseDatas.Count > 0)
 {
 surveyData.ResponseDatas.Add(responseData);

 109working with data in the surveys application

 }
 }

 this.surveySqlStore
 .SaveSurvey(tenant.SqlAzureConnectionString, surveyData);
}

The message parameter to this method identifies the survey to export.
The method first resets the survey data in SQL Azure before it iter-
ates over all the responses to the survey and saves the most recent
data to SQL Azure. The application does not attempt to parallelize
this operation; for subscribers who have large volumes of data, the
dump operation may run for some time.

The application uses LINQ to SQL to manage the interaction
with SQL Azure. The following code from the SurveySqlStore class
shows how the application uses the SurveyData and SurveySqlData
Context classes. The SurveySql.dbml designer creates these classes.

public void SaveSurvey(string connectionString,
 SurveyData surveyData)
{
 using (var dataContext =
 new SurveySqlDataContext(connectionString))
 {
 dataContext.SurveyDatas.InsertOnSubmit(surveyData);
 try
 {
 dataContext.SubmitChanges();
 }
 catch (SqlException ex)
 {
 Trace.TraceError(ex.TraceInformation());
 throw;
 }
 }
}

This task is part of the
worker role described in
Chapter 4, “Building a
Scalable, Multi-Tenant
Application for Windows
Azure.” It is triggered by a
message in a queue instead
of by a schedule.

110

References and Resources
For more information about Windows Azure storage services,
see “Using the Windows Azure Storage Services” on MSDN and
the Windows Azure Storage Team Blog:

http://msdn.microsoft.com/en-us/library/ee924681.aspx
http://blogs.msdn.com/b/windowsazurestorage/

For more information about SQL Azure, see the paper, SQL Azure
Considerations Guide, available for download at:

http://wag.codeplex.com

For further information about continuation tokens and Windows
Azure table storage, see the section, “Implementing Paging with
Windows Azure Table Storage” in Chapter 8 of the book “Windows
Azure Architecture Guide, Part 1, Moving Applications to the Cloud,”
available at:

http://msdn.microsoft.com/en-us/library/ff728592.aspx.

http://msdn.microsoft.com/en-us/library/ee924681.aspx
http://blogs.msdn.com/b/windowsazurestorage/
http://wag.codeplex.com
http://msdn.microsoft.com/en-us/library/ff728592.aspx

111

This appendix focuses on the scenarios for updating a Windows
Azure™ technology platform service that you have previously de-
ployed. It contains the following topics:
•	 “Options for Updating a Windows Azure Service”
•	 “Limitations When Updating a Windows Azure Service”
•	 “Design Considerations for Maximizing Upgradability”
•	 “About Upgrade Domains and Fault Domains”
•	 “Using Upgrade Domains for In-Place Upgrades”
•	 “Using the Windows Azure Service Management API”

options for updating a windows azure
service

You have three options for updating a deployed Windows Azure service:
•	 Redeploy the service. Suspend and then delete the service, and

then deploy the new version.
•	 Perform a staged deployment. Upload the new package and

swap it with the existing production version. This is referred to
as a VIP swap because it simply swaps the visible IP addresses of
the services.

•	 Perform an in-place upgrade. The new package is uploaded and
applied to the running instances of the service. There are
options that allow you to update individual instances and
individual roles within each instance.

The first of these three options, redeployment, requires downtime for
your service, while the second two options allow you to perform
updates without incurring service downtime. However, there are
limitations on the changes you can make to a deployed service when
using the second two options. For more information, see the follow-

Appendix A Updating a Windows
Azure Service

112 appendix a

ing section, “Limitations When Updating a Windows Azure Service”.
For information about how you can use in-place upgrades, see the

sections, “About Upgrade Domains and Fault Domains” and “Using
Upgrade Domains for In-Place Upgrades,” later in this guidance.

For more information about updating a deployed Windows Azure
Service, see “Upgrading a Service” on MSDN® (http://msdn.micro-
soft.com/en-us/library/ee517254.aspx).

limitations when updating a windows
azure service

The following are the general rules for choosing the appropriate type
of update to perform for a deployed service:
•	 If you need to change the number or type of endpoints for

existing roles, you must delete and redeploy the service.
•	 If you need to change the service definition, you must perform a

staged (VIP swap) deployment (or you can redeploy the service).
•	 If there is no change to the service definition (.csdef) file, you

can perform an in-place update.
The following table shows in more detail the types of changes you can
make to a deployed service using the three update options.

Changes permitted to hosting,
services, and roles

In-place
upgrade

Staged
(VIP
swap)

Delete and
re-deploy

Operating system version No Yes Yes

.NET trust level No Yes Yes

Virtual machine size No Yes Yes

Local storage settings No Yes Yes

Number of roles for a service No Yes Yes

Number of instances of a particular
role

Yes Yes Yes

Number or type of endpoints for a
service

No No Yes

Names and values of configuration
settings

No Yes Yes

Values (but not names) of configura-
tion settings

Yes Yes Yes

Add new certificates No Yes Yes

Change existing certificates Yes Yes Yes

Deploy new code Yes Yes Yes

http://msdn.micro-soft.com/en-us/library/ee517254.aspx
http://msdn.micro-soft.com/en-us/library/ee517254.aspx
http://msdn.micro-soft.com/en-us/library/ee517254.aspx

 113updating a windows azure service

Note: When you redeploy a service, you will be allocated new
visible IP addresses for the endpoints, which can interrupt access to
the service. To reduce the possibility of the need to redeploy your
service, ensure that you define all the endpoints you will require for
the service, including both HTTP and HTTPS endpoint types for
each one.

Updating Only the Configuration of a Service
If you need to edit only the configuration information for the service,
and you do not need to deploy new code, you can do this using the
Windows Azure Developer Portal or the Windows Azure Service
Management API. You can edit the service configuration (.cscfg) file
on the portal or upload a new .cscfg file through the portal. However,
you must ensure that the uploaded file schema matches the existing
service definition. The service will detect and apply the new configu-
ration settings after a preset period.

Redeploying a Service Without Incurring Downtime
If you need to redeploy your service (typically, this occurs when you
need to change the number of roles or endpoints it contains), you can
change the Domain Name System (DNS) entries at your domain reg-
istrar or in your own DNS server that contains the DNS records for
your service domain. This allows you to redirect requests to the new
version as the DNS change propagates through the world’s DNS serv-
ers. After one or two days, you can remove the original service.

For example, if your service DNS name is myservice.contoso.com
and you map www.contoso.com to this in your DNS, you could create
a new service at newservice.contoso.com and then map www.con-
toso.com to it using a CNAME record. After the DNS change propa-
gates, all requests will go to the new service and you can remove the
old service.

design considerations for maximizing
upgradability

Consider the following when you are designing your application to
maximize the capabilities for upgrading it, and to make it easier to
deploy updated versions:
•	 If you intend to use in-place upgrades, ensure that state held

within the service is replicated or stored outside the roles, so
that it is not lost when roles restart after the upgrade process
completes. Roles must correctly re-initialize when they restart,
and they should not assume that locally held state is available.

http://www.contoso.com
http://www.con-toso.com
http://www.con-toso.com
http://www.con-toso.com

114 appendix a

•	 Avoid creating tables within the run-time operations or business
logic of a service. Use a separate initialization routine to gener-
ate any tables required by the service roles. This avoids perfor-
mance degradation through exceptions thrown when a table
already exists. For sample or demo applications, you can per-
form the initialization in the OnStart method in the role.
However, instead of multiple role instances attempting to
initialize the storage at the same time in a production environ-
ment, it is better to have a separate console application or script
to perform the initialization. When deleting and recreating
tables, ensure you wait for approximately one minute for the
existing table to be fully removed or an exception will be
thrown when creating a new table with the same name.

•	 Consider setting the IgnoreMissingProperties property to true
for the DataContext you use to access tables. By default, this is
property is set to false, which means that, when you add new
properties to an existing table, existing clients that are not
aware of the new property will receive an ADO.NET Data
Services exception. When you set IgnoreMissingProperties to
true, ADO.NET Data Services will not throw an exception when
the client is not aware of the added properties. Although
existing clients will not be able to use the added properties, this
does allow you to extend the schema of a table and then
upgrade clients later. This is particularly important in two
specific scenarios:
•	 For public services where you cannot be sure that all users

will have upgraded versions of the client software
•	 When you perform in-place upgrades, so that the roles in

upgrade domains that have not yet been upgraded can still
communicate with the upgraded roles and tables

•	 Properties in a table are identified by the combination of the
name and the data type, so it is possible to have more than one
property with the same name. If you need to change the data
type of a property, you must add a new property with the
required name and data type, copy the data from the old
property to the new property for each row (converting it to
the appropriate new type if required), and then delete the
old property from the table. Ensure that you set the Ignore
MissingProperties property to true for the DataContext
when performing these operations.

•	 Consider storing a table version number in each row of your
tables. This allows newer clients to detect the schema version
and take appropriate action, such as storing a default value in

 115updating a windows azure service

an added property when they update or add a row. After all
clients are upgraded to understand the new schema, they can
be updated again to make full use of the new schema and the
added properties; and the row version number can be updated.

about upgrade domains and fault domains
When you deploy a service to Windows Azure, you specify the num-
ber of instances of each role you want to run. The Windows Azure
Service Level Agreement guarantees the level of connectivity uptime
for your service only if you deploy two or more instances of each role,
which allows the service to continue to be available even if a server
that hosts one instance of a role fails.

Fault Domains
The infrastructure of each Windows Azure data center is notionally
divided into multiple sections known as fault domains. These sections
of the infrastructure (which are not necessarily individual servers or
server racks) are designed in such a way that a failure of one fault
domain is extremely unlikely to affect any other fault domain. When
you deploy a service, the Windows Azure Fabric Controller auto-
matically locates the roles in at least two different fault domains
so that a failure in one domain will not affect all instances of your
service.

Note: There is no guarantee that your role instances will be located
in more than two fault domains, so there is no point in deploying
more than two instances of a role unless this is necessary to meet
the load anticipated for your service or for other operational
reasons.

Upgrade Domains
Whereas a fault domain is a physical location within a data center, an
upgrade domain is a logical unit of deployment, although it also af-
fects physical role location. An upgrade domain is primarily a way of
logically subdividing your role instances into groups to allow you to
more closely control how updates to the instances occur when you
perform an in-place upgrade to your service. However, as long as you
define more than one upgrade domain (and you have more than one
instance of each role), the Windows Azure Fabric Controller will en-
sure that the role instances within each domain are located in at least
two different fault domains.

The main advantage of using upgrade domains and in-place
upgrades to a service is that the Windows Azure Fabric Controller
will update all the roles within the same upgrade domain as one

116 appendix a

transacted operation. Only the roles in that upgrade domain will be
stopped, upgraded, and restarted. This means that the roles in other
upgrade domains will continue to be available and can service requests.
After the upgrade to one domain completes and the roles restart, the
upgrade process automatically moves to the next upgrade domain.

If you are concerned that the performance of your application will
degrade during the upgrade process when the roles in an upgrade
domain are stopped, you should consider configuring additional role
instances in an additional upgrade domain to maintain capacity.

You can also specify that updates be applied to only a single up-
grade domain, and to only specific types of roles within that domain.
This allows you, for example, to upgrade just the web roles without
stopping and restarting the worker roles (which would result in the
loss of any local state they may hold). If you specify only a single up-
grade domain for a service, you will not benefit from the capability to
maintain availability when performing an in-place upgrade.

You specify the number of upgrade domains for your service using
the upgradeDomainCount attribute of the root ServiceDefinition
element in the service definition (.csdef) file. The default is five
upgrade domains for each service. For information about the
ServiceDefinition element, see the relevant section of “Service Defi-
nition Schema” on MSDN (http://msdn.microsoft.com/en-us/library/
ee758711.aspx#ServiceDefinition).

Within your code, you can query the UpdateDomain property of
the RoleInstance class to discover which upgrade domain a role is
located within (note the inconsistent naming of this property). The
RoleInstance class also exposes the FaultDomain property, but this
will only return the values 1 or 2 because a service is only guaranteed
to run in two fault domains, even though it may be physically located
in more than two.

using upgrade domains for in-place
upgrades

You can perform either an automatic or a manual upgrade to a service.
If you specify an automatic upgrade, the Windows Azure Fabric Con-
troller will automatically process all the roles in each domain. It works
through the upgrade domains one by one, stopping, upgrading, and
restarting the roles in that upgrade domain before moving on to the
next upgrade domain.

If you specify a manual upgrade, the Windows Azure Fabric Con-
troller will process only the roles in the specified upgrade domain. You
can then check that the update succeeded and that the service is
performing correctly before applying the upgrade to other domains.
However, because the load balancer will distribute requests between

http://msdn.microsoft.com/en-us/library/ee758711.aspx#ServiceDefinition
http://msdn.microsoft.com/en-us/library/ee758711.aspx#ServiceDefinition

 117updating a windows azure service

all running instances of your service, you cannot verify correct behav-
ior just by browsing the service. Instead, you should use instrumenta-
tion such as trace messages and performance counters within the
service roles to create the appropriate information that identifies the
performance of each role instance.

If you want to upgrade only a specific role within each domain,
you can specify this role when performing a manual upgrade and it
will apply to only that role. This means that you may be able to main-
tain state if it is held in a role that you do not need to upgrade.

You can initiate an in-place upgrade using the Upgrade button on
the Hosted Service page of the Windows Azure portal. You specify
the following settings before you start the upgrade:
•	 Upgrade Mode. Select Automatic to upgrade all domains or

Manual to upgrade one domain at a time.
•	 Package. Select a service package to upload from your local file

system or a service package located in BLOB storage.
•	 Configuration Settings. Select a configuration file to upload

from your local file system or a configuration file located in
BLOB storage.

•	 Service Deployment Name. Specify a name for the updated
deployment.

•	 Service Upgrade. Specify if you want to upgrade all the roles
within the service or a single role.

Alternatively, you can use third-party tools or the Windows Azure
Service Management API to initiate an in-place upgrade. The next
section describes the Windows Azure Service Management API.

using the windows azure service
 management api

The Windows Azure Service Management API exposes operations
that allow you to perform the tasks available through the Windows
Azure portal by writing and executing code. You can use it to manage
almost all aspects of your service except for accessing billing data,
creating subscriptions, or uploading Management API certificates.

The Service Management API uses Representational State Trans-
fer (REST) protocol and XML. You must submit requests to the core
management address using HTTPS. For example, the following request
returns a list of hosted services for a specified subscription ID.

XML
https://management.core.windows.net/subscription-id/services/
hostedservices

https://management.core.windows.net/subscription-id/services/

118 appendix a

You can also submit XML documents that contain the information
required to perform operations, such as creating a deployment, as the
body of a posted request. For more information about the available
operations, see “Windows Azure Service Management REST API
Reference” on MSDN (http://msdn.microsoft.com/en-us/library/
ee460799.aspx).

Accessing the Windows Azure Service Management API
You can access the Windows Azure Service Management API using
a range of techniques, depending on your own requirements. The fol-
lowing are some examples:
•	 Use the csmanage.exe command line tool, which makes it easy

to generate and send requests to the service using command
line parameters.

•	 Use a custom client library and Windows Communication
Foundation (WCF) bindings to send requests to the service
management API.

•	 Use the REST protocol and XML documents in applications that
do not run on or are not built using the .NET Framework.

•	 Use PowerShell scripts to generate and send requests.
•	 Use it in MSBuild tasks to automate and configure deployments

Note: Microsoft® Visual Studio® development system uses the
Windows Azure Service Management API to deploy and manage
Windows Azure services.

For more information about the Windows Azure Service Manage-
ment API, see “About the Service Management API” on MSDN (http://
msdn.microsoft.com/en-us/library/ee460807.aspx).

The csmanage.exe command line tool, together with other useful
resources to help you learn and use the Windows Azure Service
Management API, is available from “Windows Azure Code Samples”
in the MSDN Code Gallery (http://code.msdn.microsoft.com/
windowsazuresamples).

A set of PowerShell scripts for accessing the Windows Azure
Service Management API can be downloaded from “Windows Azure
Service Management CmdLets” in the MSDN Code Gallery (http://
code.msdn.microsoft.com/azurecmdlets).

http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/ee460807.aspx
http://msdn.microsoft.com/en-us/library/ee460807.aspx
http://code.msdn.microsoft.com/windowsazuresamples
http://code.msdn.microsoft.com/windowsazuresamples
http://code.msdn.microsoft.com/azurecmdlets
http://code.msdn.microsoft.com/azurecmdlets

 119updating a windows azure service

Performing Service Upgrades Using the Service
Management API

Unlike the Windows Azure portal, the Windows Azure Service Man-
agement API does not allow you to upload a new service package
from your local file system. You must first upload the service package
to the Windows Azure Blob service, and then specify the BLOB ser-
vice address of the package when you initiate the upgrade. However,
you can automate access to the BLOB service using the Service
Management API. For more information, see “About the Storage
Service API” on MSDN (http://msdn.microsoft.com/en-us/library/
dd573356.aspx).

To upgrade a service using the Windows Azure Service Manage-
ment API, you first call the Upgrade Deployment operation to initiate
the upgrade; specifying the service identifier, the upgrade mode
(automatic or manual), the BLOB storage address of the upgrade
package, and the name of the role to upgrade (if you are upgrading a
single role).

If you specify manual upgrade mode, you must also call the Walk
Upgrade Domain operation on each upgrade domain in order, starting
from the domain with ID zero, to complete the upgrade. If you call
this operation out of order, the API will return an error.

Using the Windows Azure Service Management API
to Manage Scaling

One possible use of the Windows Azure Service Management API is
the opportunity to react to load on a service by automatically adding
or removing role and service instances. For example, you may use a
remote application and the Windows Azure Diagnostics mechanism
to monitor a range of factors that indicate performance of the service,
such as response time, processor load, or operational queue length.
The remote application can then use the Windows Azure Service
Management API to add or remove instances as the load on the
service varies over time. For an example of this technique, see
the post, “Auto-scaling in Azure,” on the Windows Azure - Cloud
computing blog (http://blogs.msdn.com/b/gonzalorc/archive/2010/
02/07/auto-scaling-in-azure.aspx).

http://msdn.microsoft.com/en-us/library/dd573356.aspx
http://msdn.microsoft.com/en-us/library/dd573356.aspx
http://blogs.msdn.com/b/gonzalorc/archive/2010/02/07/auto-scaling-in-azure.aspx
http://blogs.msdn.com/b/gonzalorc/archive/2010/02/07/auto-scaling-in-azure.aspx

121

This appendix describes some of the technique specific to Windows
Azure™ technology platform applications that will help you to detect
and resolve issues when building, deploying, and running Windows
Azure applications. It contains the following topics:
•	 “Dependencies for Azure Applications and Projects”
•	 “Debugging Azure Applications Locally During Development”
•	 “Common Setup and Deployment Errors with Windows Azure”
•	 “Using IntelliTrace with Applications Deployed to Windows

Azure”
•	 “Using Windows Azure Diagnostics”
•	 “Resolving Permission Issues in Partial Trust Mode”
•	 “More Informatide.”

dependencies for azure applications and
projects

To ensure that your Windows Azure projects will build and deploy
correctly, ensure that you have the most recent versions of the
Windows Azure tools installed and configured. Full integration with
Windows Azure is available in Microsoft® Visual Studio® 2008 devel-
opment system and Visual Studio 2010. If you want to use Microsoft
IntelliTrace™ software to help debug your applications, you must
install Visual Studio 2010 Ultimate Edition. IntelliTrace is described in
the section, “Using IntelliTrace with Applications Deployed to Win-
dows Azure,” later in this appendix.

You must also install the Visual Studio Tools for Windows Azure
and the Windows Azure SDK. For more information about the re-
quirements for building Windows Azure applications, see “Windows
Azure Platform” on MSDN® (http://msdn.microsoft.com/en-gb/
azure/default.aspx). This page also contains a section, “Interop SDKs
and Tools,” that provides links to tools for platforms other than the
Microsoft Windows® operating system and tools other than Visual
Studio.

Appendix B Debugging and
Troubleshooting
Windows Azure

Applications

http://msdn.microsoft.com/en-gb/azure/default.aspx
http://msdn.microsoft.com/en-gb/azure/default.aspx

122 appendix b

debugging azure applications locally
during development

When working in Visual Studio, the techniques used to debug a
Windows Azure application are generally identical to those for non-
Azure applications. In addition, you can use the IntelliTrace feature in
Visual Studio 2010 Ultimate Edition to output trace and debugging
information from an application deployed to Windows Azure. Intelli-
Trace is described in the section, “Using IntelliTrace with Applications
Deployed to Windows Azure,” later in this appendix.

One point to be aware of when you are debugging applications
locally is that you should not use the Debug.WriteLine or Console.
WriteLine methods to output debugging information or trace mes-
sages. Instead, use Trace.Write statements (or other methods of the
Trace class) to write to the Diagnostic Monitor type (Diagnostic
MonitorTraceListener) that Visual Studio automatically adds to your
configuration file for each role. The following XML shows the section
of the configuration file that adds the Diagnostic Monitor Trace
Listener.

XML
<configuration>
 <system.diagnostics>
 <trace>
 <listeners>
 <add type="Microsoft.WindowsAzure.Diagnostics
 .DiagnosticMonitorTraceListener,
 Microsoft.WindowsAzure.Diagnostics,
 Version=1.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 name="AzureDiagnostics">
 <filter type="" />
 </add>
 </listeners>
 </trace>
 </system.diagnostics>
 ...

 123debugging and troubleshooting applications

common setup and deployment errors
with windows azure

The following are some of the common errors that you may encounter
when running an application deployed to Windows Azure:
•	 Failing to set Internet Information Services (IIS) to load the user

profile if the application will use the Data Protection Applica-
tion Programming Interface (DPAPI). To resolve this, open
Internet Information Services (IIS) Manager, click Application
Pools in the left pane, and then click the ASP.NET v4.0 applica-
tion pool in the list of application pools. Click Advanced
Settings in the Actions pane, and then change the value of the
Load User Profile setting in the Profiles section to True.

•	 Failing to enable the HTTP Redirection modules in IIS. MVC 2
and ASP.NET 4 Web Forms applications that use URLs without
an extension (such as a URL ending in an action name) might
return an HTTP 404 error (see Knowledge Base article 2023146
at http://support.microsoft.com/?kbid=2023146). To resolve
this, open Programs and Features in Control Panel, and then
click Turn Windows Features On or Off. Expand the Internet
Information Services node, expand World Wide Web
Services, and then expand Common HTTP Features. Ensure
that HTTP Error Redirection option is selected, and then
allow the corresponding feature to be installed.

•	 Omitting a required assembly or other type of resource from
your deployment because you did not set the Copy Local
property for the assembly or resource. This will be reported as
a FileNotFoundException.

•	 Using an incorrect Windows Azure storage connection string.
This will show up in the method calls that use the connection
string.

•	 Attempting to use a native code library that you forgot to
deploy, or using a 32-bit .NET code library, will usually throw
a BadImageException.

•	 Attempting to perform a task in your code for which it does
not have permission. This will usually throw an Unauthorized
AccessException. For information about the permissions
available in a Windows Azure application, see the section,
“Resolving Permission Issues in Partial Trust Mode,” later in
this appendix.

•	 Using a SQL Server connection string that points to the local
SQL Server® or SQL Server Express instance. This will be shown
as an HttpException with the error message, “Unable to
connect to SQL Server database.”

http://support.microsoft.com/?kbid=2023146

124 appendix b

•	 Using HTTP endpoints or the default local storage account in a
diagnostics connection string for a deployed account. This will
throw an ArgumentException.

•	 Attempting to read from a queue or table that is not created or
initialized.

•	 Using a certificate that does not have an exported private key.
If you use Windows Certificate Manager to create a certificate,
you must set the option to export the private key when you
export the certificate.

•	 Including a return statement or code in a worker role that
terminates execution of the role. Windows Azure will attempt
to restart the role.

You can detect many of the deployment errors using IntelliTrace, as
described in the next section, “Using IntelliTrace with Applications
Deployed to Windows Azure.”

using intellitrace with applications
deployed to windows azure

IntelliTrace is a feature in Visual Studio 2010 Ultimate Edition that
makes debugging code easier by showing events that occurred in
your application as it ran, and the context in which they occurred. It
maintains a list of breakpoints hit by your code and the full run-time
context of the application at each one. You can review the complete
state of the application at each breakpoint to determine where issues
arise. You can configure the events that are recorded for each break-
point; also, you can switch on collection of additional data, such as the
parameter values and return values of methods that were called by the
code.

IntelliTrace is a useful tool when debugging applications locally,
but it is also useful for discovering errors in applications that you
deploy to Windows Azure. For example, if a deployed application fails
to execute, you can use IntelliTrace to provide information about the
cause of the failure. When you use IntelliSense with a deployed
Windows Azure application, it automatically collects information
about the parameter values and return values of methods that were
called by the code.

To use IntelliTrace in a deployed Windows Azure application
1. After you finish creating and testing your application within

the local development fabric, right-click the Windows Azure
service node in Solution Explorer, and then click Publish.

 125debugging and troubleshooting applications

2. In the Publish Cloud Service dialog box, enter the deploy-
ment information required to deploy your application to
Windows Azure.

3. At the bottom of the Publish Cloud Service dialog box,
select the Enable IntelliTrace for .NET 4 roles check box,
and then click OK to publish your application.

4. After deployment is complete and the application is
executing, open Server Explorer and expand the Windows
Azure Compute node to show a list of attached services.

5. If the service you have deployed is not shown in the list,
right-click the Windows Azure Compute node, point to
Add Slot, and then click New. Enter the credentials to
connect to the service.

6. In the list of services under the Windows Azure Compute
node, you will see the word IntelliTrace in brackets after
the service name and deployment state for services that
have IntelliTrace enabled. Expand the enabled service node
to show a list of roles and expand the role you want to
view to show the role instances. The icon for the instance
indicates
if it is executing, paused, or stopped.

7. Right-click a role instance in a service that has IntelliTrace
enabled, and then click View IntelliTrace Logs to start
downloading the data. After the download completes, the
IntelliTrace data opens in a Visual Studio window.

8. To examine details of the IntelliTrace data, select an
exception on the Exception Data page, and then click Start
Debugging or double-click a thread in the list. This opens
the IntelliTrace window where you can browse and filter,
and view the call stack.

9. To step through your local code using the downloaded
IntelliTrace data, open the code, right-click a code line, and
then click Search For This Line In IntelliTrace. Select a role
instance from the list that displays. You can then step
through the code and view the values of variables, the call
stack, and other useful debugging information.

Note: You should enable IntelliTrace only while debugging an
application or role. When IntelliTrace is enabled, the application
and roles will not automatically restart after a failure. This allows
Windows Azure to persist the IntelliTrace data about the failure.
You must manually restart the application or role.

126 appendix b

For more information about using IntelliTrace, see “Debugging with
IntelliTrace” on MSDN (http://msdn.microsoft.com/en-us/library/
dd264915.aspx).

using windows azure diagnostics
Windows Azure provides integrated features for monitoring, logging,
and tracing within the deployed environment; generally referred to as
diagnostics. These features are most suited to monitoring performance
of applications over time, though they can also be used for debugging
purposes as well.

Typically, you will use the monitoring features for tasks such as
performance and resource usage measurement over time, capacity
planning, traffic analysis, billing, and auditing. However, you can also
use the capability to create trace messages and log entries, and to
access log files and performance counters to perform debugging tasks
after the application is deployed to Windows Azure.

About Windows Azure Diagnostics
Windows Azure provides the following diagnostic features:
•	 A logging trace listener that allows you to write Event Tracing

for Windows (ETW), trace, and debug information that you
can upload into table storage and access from there. During
development, when running locally, the trace information is
accessible within the development fabric user interface.

•	 A monitoring agent that allows you to upload the contents
of event logs, IIS logs, crash dumps, and the output from
performance counters to BLOB storage and then access it
from there. You can determine the appropriate number of
instances of each type of data.

•	 Remote configuration for logging and monitoring that allows
you to issue commands from the desktop that cause data to
be uploaded to table storage or BLOB storage for specified
services and roles. Data can also be automatically uploaded
to table storage or BLOB storage on a predefined schedule.

Figure 1 shows an overview of the processes within the Windows
Azure diagnostics features. A Windows Azure role can specify
configuration information for the Diagnostics Monitor and start
monitoring (step 1 in the diagram). The Diagnostics Monitor collects
trace and debugging messages generated by the role (2). If the Diag-
nostics Monitor configuration specifies the collection of data from
Windows data sources such as Event logs, performance counters, or
IIS logs, this data is also collected (3).

http://msdn.microsoft.com/en-us/library/dd264915.aspx
http://msdn.microsoft.com/en-us/library/dd264915.aspx

 127debugging and troubleshooting applications

figure 1
Overview of Windows diagnostics operation

The trace, counter, and log data collected from all sources is stored in
the local directory storage (4). The maximum total storage size is 4
gigabytes (GB), but you can enforce quotas for each type of informa-
tion. The stored data is then transferred to the appropriate type of
Windows Azure storage (BLOB storage for data from event sources,
and table storage for trace and debugging output), either through a
scheduled uploaded or by issuing a command to upload specific sets
of the data (5). The data can then be accessed using Windows Azure
tools from a remote desktop (6).

Note: Future updates for Windows Azure monitoring will include
a dashboard that makes it easy to aggregate monitoring data
collected on an hourly, daily, and weekly basis, and integration
with Microsoft System Center to allow remote monitoring of
applications as part of an enterprise monitoring strategy.

The following table shows the default setting of the Diagnostics
Monitor for each type of diagnostics data source, the ways that you
initially configure it for each type of data source, and the type of
storage to which the data for each type of source is uploaded.

2

1

3

4 5

6

Windows Azure Role Instance

Role Diagnostic
Monitor

Local Directory Storage

• Event Logs
• IIS Logs
• Failed Request Log
• Performance Counters

Windows Data Sources

Windows Azure Storage

Blob Storage Table storage

Local
Desktop

128 appendix b

Data source Default configura-
tion

How to configure Storage

Trace logs Enabled, stored
locally

Diagnostics API,
trace listener

Table

Performance
counters

Disabled Diagnostics API Table

Windows Event
logs *

Disabled Diagnostics API Table

Infrastructure
logs

Enabled, stored
locally

Diagnostics API Table

IIS logs Enabled, stored
locally

Diagnostics API,
Web.config

BLOB

IIS Failed Request
logs

Disabled Diagnostics API,
Web.config

BLOB

Application crash
dumps

Disabled Diagnostics API,
Crash API

BLOB

Arbitrary logs
and files

Disabled Diagnostics API BLOB

* You cannot access the Windows Security Event log to extract events
because the Windows Azure run-time account does not have permis-
sion to access this log.

You can configure a data retention policy for each type of data
source, including the quota and removal of aged data. The data stored
in table storage is partitioned by the high-order bits of the tick count,
so queries that select data based on a time range are efficient.

Note: The IIS Failed Request Log includes requests that are not
completed within a specific interval, as well as requests that fail for
other reasons. However, collecting this information incurs consider-
able performance overhead and can only be enabled or disabled by
uploading a configuration update for the service.

You can also use the Diagnostics Monitor with some application log-
ging frameworks to generate trace and debugging information. For
example, you can use it with the Enterprise Library Logging Applica-
tion Block. The Logging Application Block makes it easy to centralize
logging by providing an easy to use and highly configurable mechanism
to generating log entries. By configuring the Microsoft.Windows
Azure.Diagnostics.DiagnosticMonitorTraceListener class as a trace
listener within the configuration of the Logging Application Block,
you can use the Enterprise Library LogWriter and TraceManager
objects to generate log trace messages within the local directory stor-
age that you then upload into table storage. The aExpense application
that is part of the patterns & practices Windows Azure Guidance
project uses this approach.

 129debugging and troubleshooting applications

Limitations of Windows Azure Diagnostics
Although the Windows Azure diagnostics mechanism provides com-
prehensive information, it is not an ideal solution for debugging and
troubleshooting applications during development and deployment.
The main issue is the effort required to enable and disable tracing and
debugging features, and the delay until the resulting data is available.

To change the configuration of the Diagnostics Monitor, you
must upload a new configuration and wait for the application to read
and enable this configuration. To change the tracing and debugging
code, you must redeploy the application to Windows Azure and wait
until the service upgrade process completes before data becomes
available. In addition, the delays in obtaining data mean that long-term
performance counter polling rates of less than approximately 15 min-
utes are not practical, which reduces the capability to easily detect
run-time issues.

In addition, when a service fails completely, it will generally re-
move all locally buffered data, including any monitoring and trace in-
formation that has not yet been transferred to table or BLOB storage.

However, the diagnostics features are useful for troubleshooting
after a failure within a role, because you can download a wide range
of information and study it to ascertain the circumstances of the
failure and the likely contributing causes.

Using a Custom Tracing, and Debugging Agent
To resolve the two main issues encountered when debugging a
deployed application, you can use a custom agent to collect the
monitoring, debugging, and trace information and send it back
immediately to a client application running on your local computer, or
you can write it directly to BLOB or table storage—instead of holding
it in the local directory buffer and then transferring it to BLOB or
table storage. This helps to overcome the delay encountered while
uploading data to storage, and it means that data in the local buffer is
not lost if the application fails completely.

An example of a custom monitoring agent is included in the
samples provided with the Windows Azure platform AppFabric SDK.
Version 1.0 (April 2010) of the Windows Azure platform AppFabric
SDK is available from the Microsoft Download Center (http://www.
microsoft.com/downloads/details.aspx?FamilyID=39856a03-1490-
4283-908f-c8bf0bfad8a5&displaylang=en). The sample named Cloud-
Trace (in the ServiceBus\Scenarios subfolder) implements a class
named CloudTraceListener that extends TraceListener to send trace
events over the service bus to a remote client using one-way multicast
events. The project also contains a client console that listens for and
displays these events in real time.

http://www.microsoft.com/downloads/details.aspx?FamilyID=39856a03-1490-4283-908f-c8bf0bfad8a5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=39856a03-1490-4283-908f-c8bf0bfad8a5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=39856a03-1490-4283-908f-c8bf0bfad8a5&displaylang=en

130 appendix b

You can use this sample as it is, or you can modify it to suit your
own requirements. For example, you might adapt it to write the trace
messages into table storage in your storage account and then monitor
items in this storage account using a remote tool running on your
local computer.

Note: You should use debugging tools such as those described here
only while testing and debugging your deployed application. The
overhead incurred by diagnostics, especially when the sample rate
is high or there is a large number of trace messages, is generally
not acceptable for a production application.

Tools for Working with Windows Azure Diagnostics
There is a growing set of tools available that allow you to view the
remote diagnostics information in table storage and BLOB storage,
configure diagnostics, and manage Windows Azure services. Within
Visual Studio, you can use the Server Manager user interface to view
and interact with deployed services. Other tools are Windows Azure
Storage Explorer (see http://azurestorageexplorer.codeplex.com/),
Windows Azure Web Storage Explorer (see http://storageexplorer.
codeplex.com/), and the Windows Azure Management Tool (MMC)
at http://code.msdn.microsoft.com/windowsazuremmc.

There is also a set of PowerShell cmdlets (single-function com-
mand-line tools) that allow you to manage diagnostics on a remote
server. You can use them to script deployments, manage upgrades,
and configure scaling of a Windows Azure application in addition to
managing the diagnostics configuration. For more information, see
“Windows Azure Service Management CmdLets” in the MSDN Code
Gallery (http://code.msdn.microsoft.com/azurecmdlets).

As an example of the capabilities of the remote tools, Figure 2
shows the Diagnostics section of the Windows Azure Management
Tool (MMC). You can use this section to change the configuration of
the Windows Azure Diagnostics Monitor for a deployed service, to
schedule uploads of the data to Windows Azure storage, and to per-
form on-demand data transfers to storage. It also provides features
for downloading and analyzing the diagnostic data held in BLOB and
table storage. You can even create your own custom extensions for
the tool to implement other data analysis options.

http://azurestorageexplorer.codeplex.com/
http://storageexplorer
http://code.msdn.microsoft.com/windowsazuremmc
http://code.msdn.microsoft.com/azurecmdlets

 131debugging and troubleshooting applications

figure 2
Windows Azure Management Tool (MMC) Diagnostics section

132 appendix b

Configuring Diagnostics Using Configuration Files
When you create a Windows Azure project in Visual Studio, it auto-
matically adds the Diagnostic Monitor type (DiagnosticMonitor
TraceListener) to your configuration file for each role.

XML
<configuration>
 <system.diagnostics>
 <trace>
 <listeners>
 <add type="Microsoft.WindowsAzure.Diagnostics
 .DiagnosticMonitorTraceListener,
 Microsoft.WindowsAzure.Diagnostics,
 Version=1.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 name="AzureDiagnostics">
 <filter type="" />
 </add>
 </listeners>
 </trace>
 </system.diagnostics>
 ...

The default configuration settings in the ServiceConfiguration.cscfg
file also specify the location of the storage account to use for trace
and monitoring data. During development and local debugging, you
can use the default value UseDevelopmentStorage=true, as shown
here.

XML
<ServiceConfiguration serviceName="MyService" xmlns="...">
 <Role name="MyRole">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting name="DiagnosticsConnectionString"
 value="UseDevelopmentStorage=true" />
 </ConfigurationSettings>
 </Role>
</ServiceConfiguration>

 133debugging and troubleshooting applications

To specify a cloud storage account in your configuration file, use the
following syntax.

XML
<Setting name="DiagnosticsConnectionString"
 value="DefaultEndpointsProtocol=https;
 AccountName=...;AccountKey=..." />

You can also use the configuration files to specify additional shared
listeners and set the levels at which they will report diagnostics infor-
mation. When you upload a new configuration for a role to an Azure
application, it detects the configuration change and (by default) re-
starts the role. However, you can vary this default behavior by editing
the code in the RoleEnvironment.Changing and RoleEnvironment.
Changed event handlers. For more information, see “Handling Con-
figuration Changes” at on MSDN (http://msdn.microsoft.com/en-us/
library/ee848064.aspx).

Using the Diagnostics API in a Windows Azure Applica-
tion

In addition to being able to configure diagnostics for a deployed ap-
plication using a configuration file and the tools described in the
previous sections of this guidance, you can also access the diagnostics
API using code within your application to configure and start diagnos-
tic monitoring and write debugging and trace information. In your
code, you can accomplish the following tasks:
•	 Specify any changes required from the default configuration of

the Diagnostics Monitor.
•	 Optionally configure scheduled uploads of the diagnostic data

to table or BLOB storage.
•	 Start the Diagnostics Monitor.
•	 Generate the any debugging and trace messages you require.

These will be output to the local buffer ready for upload to
storage, along with any other data sources that you enable.

Configuring Diagnostics Using the API
This section briefly describes the options available for configuring the
Diagnostics Monitor using code. The basic approach is to obtain a
reference to the initial default configuration for the Diagnostics
Monitor and change it as required. Typically, you will locate this code
in the OnStart method of your role. After you configure your moni-
toring requirements, you must call the Start method of the Diagnos-
tics Monitor, as shown in the section, “Activating Monitoring,” later in
this appendix.

http://msdn.microsoft.com/en-us/library/ee848064.aspx
http://msdn.microsoft.com/en-us/library/ee848064.aspx

134 appendix b

An instance of the DiagnosticMonitorConfiguration class holds
the configuration information for a Diagnostics Monitor, exposing it
through a series of properties such as DiagnosticInfrastructureLogs,
Directories, Logs, PerformanceCounters, and WindowsEventLog.
The Directories, PerformanceCounters, and WindowsEventLog
properties expose a DataSources collection that specifies the items
to monitor. Each data source you add can be configured using proper-
ties specific to the type and common properties that set the buffer
quota and transfer interval.

The following example updates the initial default configuration
by setting the polling interval (the interval at which the Diagnostics
Monitor will check for configuration changes which is, by default,
every minute), and the buffer quota for diagnostic logs. Then it adds
to the configuration a performance counter and two Windows Event
logs.

C#
// Obtain a reference to the initial default configuration.
DiagnosticMonitorConfiguration config
 = DiagnosticMonitor.GetDefaultInitialConfiguration();

// Change the polling interval and buffer quota for logs.
config.ConfigurationChangePollInterval
 = TimeSpan.FromSeconds(30.0);
config.DiagnosticInfrastructureLogs.BufferQuotaInMB = 256;

// Set the transfer interval for all logs.
config.Logs.ScheduledTransferPeriod = TimeSpan.FromMinutes(1.0);

// Configure monitoring of a Windows performance counter
// and add it to the configuration.
PerformanceCounterConfiguration perfConfig
 = new PerformanceCounterConfiguration();
perfConfig.CounterSpecifier = @"\Processor(*)\% Processor Time";
perfConfig.SampleRate = TimeSpan.FromSeconds(15.0);
config.PerformanceCounters.DataSources.Add(perfConfig);

// Configure monitoring of Windows Application and System Event
// logs,
// including the quota and scheduled transfer interval, and add
// them
// to the configuration.
WindowsEventLogsBufferConfiguration eventsConfig
 = new WindowsEventLogsBufferConfiguration();

 135debugging and troubleshooting applications

eventsConfig.BufferQuotaInMB = 256;
eventsConfig.ScheduledTransferLogLevelFilter = LogLevel.Warning;
eventsConfig.ScheduledTransferPeriod = TimeSpan.FromMinutes(10.0);
eventsConfig.DataSources.Add("Application!*");
eventsConfig.DataSources.Add("System!*");
config.WindowsEventLog = eventsConfig;
// Now remember to start the diagnostics monitor with this
// configuration.
// For more information, see the section "Activating Monitoring."

For more information about the settings available for the Diagnostic
MonitorConfiguration class, see “DiagnosticMonitorConfiguration
Members” on MSDN (http://msdn.microsoft.com/en-us/library/
microsoft.windowsazure.diagnostics.diagnosticmonitorconfiguration
_members.aspx).

To obtain a list of counter names, execute the command
TypePerf/q in a Command window.

When adding a Windows Event log to the configuration, you
specify it using an XPath statement of the form channel!xpath-query.
In the preceding example, Application!* specifies the Windows Ap-
plication event log. For more information about XPath expressions
that identify events, see “Consuming Events” on MSDN (http://msdn.
microsoft.com/en-us/library/dd996910(VS.85).aspx).

If you want to capture the contents of a crash dump, you call one
of the methods of the CrashDumps class once before starting moni-
toring. The simplest overload takes a Boolean parameter that specifies
if you want the full dump (true) or a mini-dump (false).

C#
CrashDumps.EnableCollection(false);

You can optionally specify the directory to store the crash dump using
the overload that takes a string containing the full absolute path to
the required directory.

Note: Web role requests that encounter an error and cause the
role to fail are usually caught by ASP.NET, which prevents crash
dump generation.

Activating Monitoring
This section briefly describes how you activate monitoring using the
diagnostics API. The Start method of the DiagnosticMonitor class
starts the Diagnostic Monitor using a configuration that you specify.
The Shutdown method stops the Diagnostic Monitor. The following
code starts the Diagnostic Monitor using the configuration instance
created in the previous section.

http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.diagnosticmonitorconfiguration_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.diagnosticmonitorconfiguration_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.diagnosticmonitorconfiguration_members.aspx
http://msdn.microsoft.com/en-us/library/dd996910
http://msdn.microsoft.com/en-us/library/dd996910

136 appendix b

C#
// Start the Diagnostics Monitor.
DiagnosticMonitor.Start("DiagnosticsConnectionString", config);

The first parameter is the name of a setting in the ServiceConfigu-
ration.cscfg file that specifies the storage location for uploaded
diagnostics data.

Alternatively, you can create an instance of the CloudStorage
Account class, set the properties (such as the storage endpoints and
credentials), and then pass this as the first parameter of the Start
method. If you do not specify a configuration instance when you call
the Start method, the Diagnostics Monitor will use the default con-
figuration. Ensure that you use the correct connection string, because
an incorrect string may cause monitoring to fail without causing a
run-time error.

Avoid calling the Start method of the Diagnostic Monitor more
than once. Changes you make to the configuration are automatically
detected at intervals determined by the value of the Configuration
ChangePollInterval property.

Generating Diagnostics Data Within the Application
This section briefly describes how you can write information to the
Diagnostics Monitor using the diagnostics API. Typically, you would
add code to generate trace messages containing debugging informa-
tion at any point in the code for your role where you need to generate
information to assist in debugging or monitoring the application.

The following line writes a warning message to the Diagnostics
Monitor to indicate that monitoring has been configured and started.

C#
// Write a trace message to the Diagnostic Monitor.
string roleInstance = RoleEnvironment.CurrentRoleInstance.Id;
System.Diagnostics.Trace.TraceWarning(
"Diagnostics configured and started " +
“for role instance: “ + roleInstance);

You can use the other methods of the System.Diagnostics.Trace
class to write information in the exact format you require. For more
information about these methods and the other members of the class,
see “Trace Members” on MSDN (http://msdn.microsoft.com/en-us/
library/system.diagnostics.trace_members.aspx).

In addition to generating debugging and trace log entries, one
typical requirement for generating diagnostic data within an applica-
tion is to support data sources that are not directly available in
the Windows Azure diagnostics framework. An example of this is
Windows Management Instrumentation (WMI) events, which are not

http://msdn.microsoft.com/en-us/library/system.diagnostics.trace_members.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.trace_members.aspx

 137debugging and troubleshooting applications

available through the diagnostics API. Instead, you may consider
capturing WMI events in your code and then generating log entries
for an arbitrary log. You configure arbitrary logs using the DataSources
collection of the Logs property of the configuration instance.

Transferring Diagnostics Data to Storage
This section briefly describes how you can transfer diagnostics data
from the local buffer to table and BLOB storage using the diagnostics
API. If you have configured scheduled upload transfers using the diag-
nostics configuration API or a remote tool, you do not need to per-
form any additional tasks. However, you can execute an on-demand
upload of the monitoring data in the local directory buffer to BLOB
and table storage, irrespective of whether you have configured sched-
uled uploads.

When you initiate a transfer of data to storage, consider filtering
it on the verbosity to minimize storage requirements and transaction
costs. For example, transfer only warning and critical event data.

The following code example shows a method that you can call to
initiate an on-demand transfer of diagnostics data to storage. It con-
tains hard-coded specifications of values, such as the target storage
account and the transfer options. However, you can adapt the method
code to accept any of the values as parameters if you want to create
a more generic version.

The first stage is to create a Deployment Diagnostic Manager for
the target storage account. You can specify the account using the
name and key or as a connection string in your ServiceConfiguration.
cscfg file.

C#
public Guid StartOnDemandTransfer()
{
 // Create a CloudStorageAccount for a specified name and key.
 StorageCredentialsAccountAndKey accountAndKey =
 new StorageCredentialsAccountAndKey(
 "account-name",
 "account-key");
 CloudStorageAccount storageAccount
 = new CloudStorageAccount(
 accountAndKey,
 false);

 // Specify the deployment ID of the target storage account.
 string deploymentId = "target-storage-account-deployment-id";

138 appendix b

 // Create a Deployment Diagnostic Manager for this target
 // storage account.
 DeploymentDiagnosticManager ddm =
 new DeploymentDiagnosticManager(
 storageAccount,
 deploymentId);
 ...

Alternatively, you can use the name of a storage account connection
setting defined in the ServiceConfiguration.cscfg file.

C#
 ...
 DeploymentDiagnosticManager ddm =
 new DeploymentDiagnosticManager(
 "StorageAccountConnectionString",
 deploymentId);
 ...

For more information about the Deployment Diagnostic Manager, see
“DeploymentDiagnosticManager Members” on MSDN (http://msdn.
microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.
management.deploymentdiagnosticmanager_members.aspx).

Next, you create a Role Instance Diagnostic Manager for the role
containing the diagnostics data you want to transfer. This example
assumes you want to transfer data from the current role in which the
code is executing. You can, if required, specify the ID and name of a
different role.

C#
 ...
 string roleId = RoleEnvironment.CurrentRoleInstance.Id;
 string roleName =
 RoleEnvironment.CurrentRoleInstance.Role.Name;
 RoleInstanceDiagnosticManager rdm =
 ddm.GetRoleInstanceDiagnosticManager(
 roleName,
 roleId);
 ...

Another approach is to iterate through the roles and instances in your
application using the methods of the Role Instance Diagnostic Man-
ager. The following shows two examples of iterating through all the
available instances for all roles in order to demonstrate some of
the methods available to you.

http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.management.deploymentdiagnosticmanager_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.management.deploymentdiagnosticmanager_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.management.deploymentdiagnosticmanager_members.aspx

 139debugging and troubleshooting applications

C#
 // Alternative approaches for accessing roles and instances.
 foreach (string roleName in ddm.GetRoleNames())
 {
 foreach (string instanceID in ddm.GetRoleInstanceIdsForRole(
 roleName))
 {
 RoleInstanceDiagnosticManager rdm
 = ddm.GetRoleInstanceDiagnosticManager(
 roleName,
 instanceID);
 // Use the Role Instance Diagnostic Manager here ...
 }
 }

 foreach (string roleName in ddm.GetRoleNames())
 {
 IEnumerable<RoleInstanceDiagnosticManager> rdmList
 = ddm.GetRoleInstanceDiagnosticManagersForRole(roleName);
 foreach (RoleInstanceDiagnosticManager rdm in rdmList)
 {
 // Use the Role Instance Diagnostic Manager here ...
 }
 }

After you obtain a Role Instance Diagnostic Manager, you specify the
options for the transfer of the diagnostics data from the buffer to
storage using an instance of the OnDemandTransferOptions class, as
shown here.

C#
 ...
 // Create a configuration options instance for the transfer
 // and set the required property values.
 OnDemandTransferOptions options =
 new OnDemandTransferOptions();
 options.NotificationQueueName = "transfer-queue-name";
 options.From = new DateTime(2010, 6, 10, 12, 0, 0);
 options.To = DateTime.UtcNow;
 options.LogLevelFilter = LogLevel.Critical;
 ...

The NotificationQueueName is the name of a queue to which the
Role Instance Diagnostic Manager will send a notification that
the transfer has completed. If you are not interested in receiving a
notification, you can ignore this property.

140 appendix b

Finally, you start the transfer by calling the BeginOnDe-
mandTransfer method of the Role Instance Diagnostic Manager,
specifying the type of data source for which you want to transfer data
and the options instance you created. The method returns a GUID
that identifies the notification message that will be sent to the queue
you specified as the value of the NotificationQueueName property.

C#
 ...
 // Start the transfer and return the GUID that identifies it.
 return rdm.BeginOnDemandTransfer(
 DataBufferName.WindowsEventLogs,
 options);
}

Other methods of the Role Instance Diagnostic Manager allow you to
cancel a specific transfer, cancel all transfers, iterate over the list of
active transfers, and modify the configuration settings for the trans-
fer. For more information, see “RoleInstanceDiagnosticManager Mem-
bers” on MSDN (http://msdn.microsoft.com/en-us/library/microsoft.
windowsazure.diagnostics.management.roleinstancediagnosticman-
ager_members.aspx).

resolving permission issues in partial
trust mode

By default, code within all Windows Azure application roles runs in
full-trust mode that grants your application permissions to perform
operations such as invoking non-.NET code, using .NET Framework
libraries that require full trust or inter-process communication using
named pipes. However, even in full-trust mode, Windows Azure ap-
plications cannot perform some operations, such as modifying the
registry or writing to the system directory.

You can configure code within Windows Azure application roles
to run in partial-trust mode that is approximately equivalent to ASP.
NET medium-trust level. This means that some operations your code
may execute, such as attempting to use sockets for network access,
will cause a run-time error because of insufficient permissions. For
a full list of permission settings, see “Windows Azure Partial Trust
Policy Reference” on MSDN (http://msdn.microsoft.com/en-us/
library/dd573355(v=MSDN.10).aspx).

To enable partial-trust mode, add the enableNativeCode
Execution=”false” attribute to the role configuration in the Service
Definition file, as shown here.

http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.management.roleinstancediagnosticman-ager_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.management.roleinstancediagnosticman-ager_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.management.roleinstancediagnosticman-ager_members.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.diagnostics.management.roleinstancediagnosticman-ager_members.aspx
http://msdn.microsoft.com/en-us/library/dd573355
http://msdn.microsoft.com/en-us/library/dd573355

 141debugging and troubleshooting applications

XML
<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="MyService"
 xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/
 ServiceDefinition">
 <WebRole name="MyWebRole" enableNativeCodeExecution="false">
 <InputEndpoints>
 ...
 </InputEndpoints>
 </WebRole>
 ...
</ServiceDefinition>

You can also enable partial-trust mode through the configuration of
the role in your cloud project.

more information
For more information about debugging and troubleshooting Windows
Azure applications, see the following resources:
•	 “Windows Azure Troubleshooting Guide” on MSDN:

http://msdn.microsoft.com/en-us/library/ff431736(v=MSDN.10).
aspx

•	 “Implementing Windows Azure Diagnostics” on MSDN:
http://msdn.microsoft.com/en-us/library/
ee758705(v=MSDN.10).aspx

•	 “Exercise 3 - Monitoring Applications in Windows Azure” on
Channel 9:
http://channel9.msdn.com/learn/courses/Azure/Deployment/
DeployingApplicationsinWindowsAzure/Exercise-3-Monitoring-
Applications-in-Windows-Azure/

•	 “Take Control of Logging and Tracing in Windows Azure” in
MSDN Magazine:
http://msdn.microsoft.com/en-gb/magazine/ff714589.aspx

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition
http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition
http://msdn.microsoft.com/en-us/library/ff431736
http://msdn.microsoft.com/en-us/library/
http://channel9.msdn.com/learn/courses/Azure/Deployment/
http://msdn.microsoft.com/en-gb/magazine/ff714589.aspx

143

Index

A
Access Control Services (ACS), 26
acknowledgments, xix
Analyze method, 104-105
AppendSurveyAnswerIdToAnswerList

method, 97
applications

customizing by tenant, 13-14
life cycle management, 11
managing costs, 17-18
partitioning, 41-45

AppRoutes class, 43-44
ASP.NET

routing, 73
security, 40
sites, 40

audience, xiv
AuthenticateAndAuthorizeAttribute

class, 30-31
AuthenticateAndAuthorizeAttribute

filter, 33-34
AuthenticateUser method, 30-31
authentication and authorization, 11,

25-35, 46
for basic subscribers, 47
for individual subscribers, 48

AzureTable class, 82-84

B
BatchProcessingQueueHandler class,

69-71
BatchProcessingQueueHandlerFixture

class, 72-73

Bharath see cloud specialist role
“Bharath”

BLOBs
containing survey response data,

55
setting access control for contain-

ers, 36-37
temporary, 92-94

BLOB storage, 95
writing directly to, 89-91

BrowseResponses method, 97-98

C
caching policy, 39
claims-based authentication and

authorization model, 39
CloudBlobContainer class, 36
cloud specialist role “Bharath, xvii
CNAME entries in DNS, 39
code base maintenance, 11-12
ContainerBootstrapper class, 85
Content Delivery Network (CDN),

35-40
configuration, 37

continuation tokens, 110
cost comparison for alternative

approaches to calculating summary
statistics, 62

customer billing, 16-17, 48-49

144

D
data

display, 94-105
protecting from other tenants,

15-18
storage in the Surveys applica-

tion, 76
data architecture

extensibility, 15
scalability, 15-16

database information, 48
data in the Surveys application, 75-110

AppendSurveyAnswerIdToAn-
swerList method, 97

AzureTable class, 82-84
BrowseResponses method, 97-98
comparing solutions, 91-92, 95
ContainerBootstrapper class, 85
continuation tokens, 110
cost, 100
creating a survey with two

questions, 99
data model for a multi-tenant

application, 75-81
data storage in the Surveys

application, 76
Delayed Write pattern, 88-89
displaying data, 94-105
displaying questions, 103-104
displaying the summary statistics,

104-105
Display method, 103-104
EditorExtensions class, 104
IAzureTable interface, 82-84
implementing the paging, 97-98
maintaining the ordered list of

survey responses, 96-97
paging through survey results, 94
paging with BLOB storage, 95
paging with table storage, 94-95
performance, 101
Questions table, 77
robustness, 101
SaveSurveyAnswer method, 93-94
saving survey response data,

87-94
saving the survey response data

to a temporary BLOB, 92-94
scalability, 101

security, 101
session data storage, 98, 101
simplicity, 100
SQL Azure, 105-109
SQL Azure Considerations Guide,

110
storage services, 110
store classes, 80-81
storing survey answers, 78-79
storing survey answer summaries,

79-80
storing tenant data, 77-78
SurveyAnswersSummaryStore

class, 80
SurveyAnswerStore class, 80, 96
SurveysController class, 92-93,

102-103
SurveySqlStore class, 81, 109
Surveys table structure in SQL

Azure, 107
SurveyStore class, 80, 84-85
SurveyStore constructor, 86
SurveyTransferStore class, 81
TenantStore class, 81
testing and Windows Azure

storage, 81-86
TransferSurveysToSqlAzureCom-

mand class, 107-109
writing directly to BLOB storage,

89-91
debugging and troubleshooting

Windows Azure applications,
121-141

activate monitoring, 135-136
common setup and deployment

errors with Windows Azure,
123-124

configuring diagnostics with files,
132-133

custom tracing, and debugging
agent, 129-130

dependencies for Azure applica-
tions and projects, 121

DiagnosticMonitorConfiguration-
Members, 135

Diagnostic Monitor Trace
Listener, 122

Diagnostic Monitor type, 132
diagnostics, 126-129

 145index

diagnostics API, 133-140
diagnostic tools, 130-131
generating diagnostics data

within the application,
136 -137

Implementing Windows Azure
Diagnostics, 141

IntelliTrace, 124-126
NotificationQueueName

property, 140
OnDemandTransferOptions class,

139
resolving permission issues in

partial trust mode, 140-141
Take Control of Logging and Trac-

ing in Windows Azure, 141
transferring diagnostics data to

storage, 137-140
UseDevelopmentStorage=true,

132
Windows Azure Troubleshooting

Guide, 141
Delayed Write pattern, 88-89
diagnostic data, 136-137
DiagnosticMonitorConfigurationMem-

bers, 135
Diagnostic Monitor Trace Listener, 122
Diagnostic Monitor type, 132
diagnostics API, 133-140
diagnostics data, 137-140
diagnostic tools, 130-131
Display method, 43, 103-104
DNS CNAME, 13-14, 39
DNS names, certificates, and SSL, 19-23
domains, 115-116

E
EditorExtensions class, 104
errors, 123-124
example scenarios for worker roles,

51-52
execution model, 53-54

F
fault domains, 115
FederationResult method, 32-33
FederationSecurityTokenService class,

31-32

federation with multiple partners
sequence, 29

financial considerations, 15-18
fluent APIs, 73
ForCreateHandlerForGivenQueue unit

test, 73
foreward, xi

G
GenericQueueHandler class, 71
geo location, 23-25

information, 48

H
handling multiple background task

types, 53
Html.EditorFor element, 105
https://tailspin.cloudapp.net, 21
http://tailspin.cloudapp.net, 21

I
IAzureTable interface, 82-84
Implementing Windows Azure

Diagnostics, 141
IntelliTrace, 124-126
IT professional role “Poe”, xvii

J
Jana see software architect role “Jana”

K
key plumbing types, 68

L
legal issues, 11

M
MapReduce algorithm, 54-59, 74
Markus see senior software developer

role “Markus”
Microsoft, 1
monitoring, 12, 135-136
multiple background task types, 53
multi-tenancy architecture in Azure,

8-9
multi-tenant applications, 3
multi-tenant applications hosted on

https://tailspin.cloudapp.net
http://tailspin.cloudapp.net

146

Windows Azure, 7-18
application life cycle

management, 11
authentication and authorization,

11
billing customers, 16-17
code base maintenance, 11-12
customizing the application by

tenant, 13-14
data architecture extensibility, 15
data architecture scalability, 15-16
DNS CNAME, 13-14
financial considerations, 15-18
legal issues, 11
managing application costs, 17-18
monitoring, 12
multi-tenant data architecture,

14-18
.NET providers and third-party

components, 12-13
new clients or free trials, 13
protecting data from other

tenants, 15-18
scalability, 10
Service Level Agreements (SLA),

10
stability, 10
upgrades, 12
URLs to access the application, 13

multi-tenant applications scalability,
41-74

authentication and authorization,
46

basic subscription information,
45-46

BatchProcessingQueueHandler
class, 69-71

cost comparison for alternative
approaches to calculating
summary statistics, 62

customer billing, 48-49
customizing the user interface, 50
database information, 48
example BLOBs containing survey

response data, 55
example scenarios for worker

roles, 51-52
execution model, 53-54
geo location information, 48

handling multiple background
task types, 53

key plumbing types, 68
MapReduce algorithm, 54-59
multiple background task types,

53
on-boarding for trials and new

customers, 45-48
partitioning the application, 41-45
ProcessMessages method, 71
provisioning a trust relationship

with the subscriber’s identity
provider, 46-47

provisioning authentication and
authorization for basic
subscribers, 47

provisioning authentication and
authorization for individual
subscribers, 48

references and resources, 73-74
scaling applications by using

worker roles, 50-59
scaling the surveys application,

60-73
slug name, 42
Task.Factory.StartNew method,

70
testing the worker role, 72-73
triggers for background tasks, 52
using a worker role to calculate

the summary statistics, 63-67
worker role instances, 54
worker role “plumbing” code,

67-71
multi-tenant data architecture, 14-18

N
.NET providers and third-party

components, 12-13
new clients or free trials, 13
NotificationQueueName property, 140

O
on-boarding for trials and new

customers, 45-48
OnDemandTransferOptions class, 139
options for updating a deployed

Windows Azure service, 110-119

 147index

design considerations for
maximizing upgradability,
113-115

fault domains, 115
limitations when updating a

Windows Azure service,
112-113

managing scaling, 119
options for updating a deployed

Windows Azure service,
117-118

redeploying a service without
incurring downtime, 113

service upgrades using the Service
Management API, 119

updating only the configuration
of a service, 113

upgrade domains, 115-116
using upgrade domains for in-

place upgrades, 116-117

P
paging implementation, 97-98
performance, 101
permission issues in partial trust mode,

140-141
Poe see IT professional role “Poe”
preface, xiii-xvii
prerequisites, xvi
ProcessMessages method, 71

Q
QuestionAnswer class, 78-80
questions display, 103-104
Questions table, 77
QuestionTemplateFactory class, 104

R
references and resources, 73-74
robustness, 101
roles, xvii

S
SaveSurveyAnswer method, 93-94
scalability, 10, 101
scaling, managing, 119
scenarios see Tailspin scenario
security, 101

senior software developer role
“Markus”, xvii

ServiceDefinition.csdef file, 22
Service Level Agreements (SLA), 10
service upgrades using the Service

Management API, 119
session data storage, 98, 101
session tokens, protecting in Windows

Azure, 34-35
SetPermissions method, 36
simplicity, 100
single-tenant vs. multi-tenant

applications, 7-18
slug name, 42, 76
software architect role “Jana”, xvii
SQL Azure, 105-109
SQL Azure Considerations Guide, 110
stability, 10
storage

services, 110
Windows Azure storage, 81-86

store classes, 80-81
subscription information, 45-46
summary statistics, 104-105
SurveyAnswer class, 78-80
survey answers, 78-79
SurveyAnswersSummaryStore class, 80
SurveyAnswerStore class, 80, 96-97
survey answer summaries, 79-80
SurveyAreaRegistration class, 44
survey response data, 87-94
survey responses, 96-97
survey results, 94
Surveys application, 60-73
Surveys application access, 19-40

Access Control Services (ACS), 26
authentication and authorization,

25-35
caching policy, 39
CDN configuration, 37
Content Delivery Network

(CDN), 35-39
DNS names, certificates, and SSL,

19-23
federation with multiple partners

sequence, 29
further information, 39-40
geo location, 23-25
goals and requirements, 20

148

https://tailspin.cloudapp.net, 21
http://tailspin.cloudapp.net, 21
inside the implementation, 21-23
overview of the solution, 20-23
protecting session tokens in

Windows Azure, 34-35
setting the access control for the

BLOB containers, 36-37
URL configuration, 37-38
web roles in the surveys

application, 19-23
SurveysController class, 92-93, 102-103
SurveySqlStore class, 81, 109
SurveyStore class, 84-86
SurveyStore constructor, 86
SurveyTransferStore class, 81
survey with two questions, 99

T
table storage, 94-95
Tailspin scenario, 1-6

goals and concerns, 3-4
Surveys application, 2-3
Surveys application architecture,

5-6
Take Control of Logging and Tracing in

Windows Azure, 141
Task.Factory.StartNew method, 70
Task Parallel Library, 74
Tenant class, 77-78
tenant data, 77-78
tenants, 3
TenantStore class, 81
TransferSurveysToSqlAzureCommand

class, 107-109
trust relationship with the subscriber’s

identity provider, 46-47

U
UpdatingSurveyResultsSummaryCom-

mand class, 63-67
upgrade domains, 115-116

for in-place upgrades, 116-117
upgrades, 12
URL Rewrite Module for IIS, 73
URLs

to access the application, 13
configuration, 37-38

UseDevelopmentStorage=true, 132
user interface, customizing, 50

W
web roles in the surveys application,

19-23
Windows Azure storage, 81-86
Windows Azure Troubleshooting

Guide, 141
worker role, 72-73

to calculate the summary
statistics, 63-67

instances, 54
“plumbing” code, 67-71

https://tailspin.cloudapp.net
http://tailspin.cloudapp.net

	Contents
	Foreword
	Preface
	1. The Tailspin Scenario
	The Tailspin Company
	The Surveys Application Architecture

	2. Hosting a Multi-Tenant Application on Windows Azure
	Single-Tenant vs. Multi-Tenant
	Multi-Tenancy Architecture in Azure
	Selecting a Single-Tenant or Multi-Tenant Architecture

	3. Accessing the Surveys Application
	DNS Names, Certificates, and SSL in the Surveys Application
	Geo-Location
	Authentication and Authorization
	Content Delivery Network
	More Information

	4. Building a Scalable, Multi-Tenant Application for Windows Azure
	Partitioning the Application
	On-Boarding for Trials and New Customers
	Billing Customers
	Scaling Applications by Using Worker Roles
	Scaling the Surveys Application
	References and Resources

	5. Working with Data in the Surveys Application
	A Data Model for a Multi-Tenant Application
	Testing and Windows Azure Storage
	Saving Survey Response Data
	Displaying Data
	Using SQL Azure
	References and Resources

	Appendix A. Updating a Windows Azure Service
	Options for updating a Windows Azure Service
	Limitations when updating a Windows Azure Service
	Design considerations for maximizing upgradability
	About upgrade domains and fault domains
	Using upgrade domains for in-place upgrades
	Using the Windows Azure Service Management API

	Appendix B. Debugging and Troubleshooting Windows Azure Applications
	Dependencies for Azure applications and projects
	Debugging Azure applications locally during development
	Common Setup and deployment errors with Windows Azure
	Using intellitrace with applications deployed to Windows Azure
	Using Windows Azure diagnostics
	Resolving permission issues in partial trust mode
	More information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

